# utils from langchain_chroma import Chroma from langchain_nomic.embeddings import NomicEmbeddings from langchain_core.documents import Document from langchain.retrievers.document_compressors import CohereRerank from langchain.retrievers import ContextualCompressionRetriever from langchain.retrievers import EnsembleRetriever from langchain_community.retrievers import BM25Retriever from langchain_groq import ChatGroq from dotenv import load_dotenv from langchain_core.prompts import ChatPromptTemplate from langchain_core.runnables import Runnable, RunnableMap from langchain.schema import BaseRetriever from qdrant_client import models from langchain_huggingface.embeddings import HuggingFaceEmbeddings load_dotenv() #Retriever def retriever(n_docs=5): vector_database_path = "chromadb3" #embeddings_model = NomicEmbeddings(model="nomic-embed-text-v1.5", inference_mode="local") embeddings_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") vectorstore = Chroma(collection_name="chroma_db", persist_directory=vector_database_path, embedding_function=embeddings_model) vs_retriever = vectorstore.as_retriever(k=n_docs) texts = vectorstore.get()['documents'] metadatas = vectorstore.get()["metadatas"] documents = [] for i in range(len(texts)): doc = Document(page_content=texts[i], metadata=metadatas[i]) documents.append(doc) keyword_retriever = BM25Retriever.from_documents(documents) keyword_retriever.k = n_docs ensemble_retriever = EnsembleRetriever(retrievers=[vs_retriever,keyword_retriever], weights=[0.5, 0.5]) compressor = CohereRerank(model="rerank-english-v3.0") retriever = ContextualCompressionRetriever( base_compressor=compressor, base_retriever=ensemble_retriever ) return retriever #Retriever prompt rag_prompt = """You are a medical chatbot designed to answer health-related questions. The questions you will receive will primarily focus on medical topics and patient care. Here is the context to use to answer the question: {context} Think carefully about the above context. Now, review the user question: {input} Provide an answer to this question using only the above context. Answer:""" # Post-processing def format_docs(docs): return "\n\n".join(doc.page_content for doc in docs) #RAG chain def get_expression_chain(retriever: BaseRetriever, model_name="llama-3.1-70b-versatile", temp=0 ) -> Runnable: """Return a chain defined primarily in LangChain Expression Language""" def retrieve_context(input_text): # Use the retriever to fetch relevant documents docs = retriever.get_relevant_documents(input_text) return format_docs(docs) ingress = RunnableMap( { "input": lambda x: x["input"], "context": lambda x: retrieve_context(x["input"]), } ) prompt = ChatPromptTemplate.from_messages( [ ( "system", rag_prompt ) ] ) llm = ChatGroq(model=model_name, temperature=temp) chain = ingress | prompt | llm return chain embedding_model = NomicEmbeddings(model="nomic-embed-text-v1.5", inference_mode="local") #Generate embeddings for a given text def get_embeddings(text): return embedding_model.embed([text], task_type='search_document')[0] # Create or connect to a Qdrant collection def create_qdrant_collection(client, collection_name): if collection_name not in client.get_collections().collections: client.create_collection( collection_name=collection_name, vectors_config=models.VectorParams(size=768, distance=models.Distance.COSINE) )