import copy import os from typing import List import streamlit as st from lagent.actions import ArxivSearch, WeatherQuery from lagent.prompts.parsers import PluginParser from lagent.agents.stream import INTERPRETER_CN, META_CN, PLUGIN_CN, AgentForInternLM, get_plugin_prompt from lagent.llms import GPTAPI class SessionState: """管理会话状态的类。""" def init_state(self): """初始化会话状态变量。""" st.session_state['assistant'] = [] # 助手消息历史 st.session_state['user'] = [] # 用户消息历史 # 初始化插件列表 action_list = [ ArxivSearch(), WeatherQuery() ] st.session_state['plugin_map'] = {action.name: action for action in action_list} st.session_state['model_map'] = {} # 存储模型实例 st.session_state['model_selected'] = None # 当前选定模型 st.session_state['plugin_actions'] = set() # 当前激活插件 st.session_state['history'] = [] # 聊天历史 st.session_state['api_base'] = None # 初始化API base地址 def clear_state(self): """清除当前会话状态。""" st.session_state['assistant'] = [] st.session_state['user'] = [] st.session_state['model_selected'] = None class StreamlitUI: """管理 Streamlit 界面的类。""" def __init__(self, session_state: SessionState): self.session_state = session_state self.plugin_action = [] # 当前选定的插件 # 初始化提示词 self.meta_prompt = META_CN self.plugin_prompt = PLUGIN_CN self.init_streamlit() def init_streamlit(self): """初始化 Streamlit 的 UI 设置。""" st.set_page_config( layout='wide', page_title='lagent-web', page_icon='./docs/imgs/lagent_icon.png' ) st.header(':robot_face: :blue[Lagent] Web Demo ', divider='rainbow') def setup_sidebar(self): """设置侧边栏,选择模型和插件。""" # 模型名称和 API Base 输入框 model_name = st.sidebar.text_input('模型名称:', value='internlm2.5-latest') # ================================== 硅基流动的API ================================== # 注意,如果采用硅基流动API,模型名称需要更改为:internlm/internlm2_5-7b-chat 或者 internlm/internlm2_5-20b-chat # api_base = st.sidebar.text_input( # 'API Base 地址:', value='https://api.siliconflow.cn/v1/chat/completions' # ) # ================================== 浦语官方的API ================================== api_base = st.sidebar.text_input( 'API Base 地址:', value='https://internlm-chat.intern-ai.org.cn/puyu/api/v1/chat/completions' ) # ================================================================================== # 插件选择 plugin_name = st.sidebar.multiselect( '插件选择', options=list(st.session_state['plugin_map'].keys()), default=[], ) # 根据选择的插件生成插件操作列表 self.plugin_action = [st.session_state['plugin_map'][name] for name in plugin_name] # 动态生成插件提示 if self.plugin_action: self.plugin_prompt = get_plugin_prompt(self.plugin_action) # 清空对话按钮 if st.sidebar.button('清空对话', key='clear'): self.session_state.clear_state() return model_name, api_base, self.plugin_action def initialize_chatbot(self, model_name, api_base, plugin_action): """初始化 GPTAPI 实例作为 chatbot。""" token = os.getenv("token") if not token: st.error("未检测到环境变量 `token`,请设置环境变量,例如 `export token='your_token_here'` 后重新运行 X﹏X") st.stop() # 停止运行应用 # 创建完整的 meta_prompt,保留原始结构并动态插入侧边栏配置 meta_prompt = [ {"role": "system", "content": self.meta_prompt, "api_role": "system"}, {"role": "user", "content": "", "api_role": "user"}, {"role": "assistant", "content": self.plugin_prompt, "api_role": "assistant"}, {"role": "environment", "content": "", "api_role": "environment"} ] api_model = GPTAPI( model_type=model_name, api_base=api_base, key=token, # 从环境变量中获取授权令牌 meta_template=meta_prompt, max_new_tokens=512, temperature=0.8, top_p=0.9 ) return api_model def render_user(self, prompt: str): """渲染用户输入内容。""" with st.chat_message('user'): st.markdown(prompt) def render_assistant(self, agent_return): """渲染助手响应内容。""" with st.chat_message('assistant'): content = getattr(agent_return, "content", str(agent_return)) st.markdown(content if isinstance(content, str) else str(content)) def main(): """主函数,运行 Streamlit 应用。""" if 'ui' not in st.session_state: session_state = SessionState() session_state.init_state() st.session_state['ui'] = StreamlitUI(session_state) else: st.set_page_config( layout='wide', page_title='lagent-web', page_icon='./docs/imgs/lagent_icon.png' ) st.header(':robot_face: :blue[Lagent] Web Demo ', divider='rainbow') # 设置侧边栏并获取模型和插件信息 model_name, api_base, plugin_action = st.session_state['ui'].setup_sidebar() plugins = [dict(type=f"lagent.actions.{plugin.__class__.__name__}") for plugin in plugin_action] if ( 'chatbot' not in st.session_state or model_name != st.session_state['chatbot'].model_type or 'last_plugin_action' not in st.session_state or plugin_action != st.session_state['last_plugin_action'] or api_base != st.session_state['api_base'] ): # 更新 Chatbot st.session_state['chatbot'] = st.session_state['ui'].initialize_chatbot(model_name, api_base, plugin_action) st.session_state['last_plugin_action'] = plugin_action # 更新插件状态 st.session_state['api_base'] = api_base # 更新 API Base 地址 # 初始化 AgentForInternLM st.session_state['agent'] = AgentForInternLM( llm=st.session_state['chatbot'], plugins=plugins, output_format=dict( type=PluginParser, template=PLUGIN_CN, prompt=get_plugin_prompt(plugin_action) ) ) # 清空对话历史 st.session_state['session_history'] = [] if 'agent' not in st.session_state: st.session_state['agent'] = None agent = st.session_state['agent'] for prompt, agent_return in zip(st.session_state['user'], st.session_state['assistant']): st.session_state['ui'].render_user(prompt) st.session_state['ui'].render_assistant(agent_return) # 处理用户输入 if user_input := st.chat_input(''): st.session_state['ui'].render_user(user_input) # 调用模型时确保侧边栏的系统提示词和插件提示词生效 res = agent(user_input, session_id=0) st.session_state['ui'].render_assistant(res) # 更新会话状态 st.session_state['user'].append(user_input) st.session_state['assistant'].append(copy.deepcopy(res)) st.session_state['last_status'] = None if __name__ == '__main__': main()