import numpy as np import streamlit as st from openai import OpenAI import os from dotenv import load_dotenv load_dotenv() # Initialize the OpenAI client client = OpenAI( base_url="https://api-inference.huggingface.co/v1", api_key=os.environ.get('HUGGINGFACEHUB_API_TOKEN') # Replace with your token ) # Create supported model model_links = { "Meta-Llama-3-8B": "meta-llama/Meta-Llama-3-8B-Instruct" } # Pull info about the model to display model_info = { "Meta-Llama-3-8B": { 'description': """The Llama (3) model is a **Large Language Model (LLM)** designed to assist with question and answer interactions.\n \nThis model was created by Meta's AI team and has over 8 billion parameters.\n **Training**: The model was fine-tuned on science textbooks from the NCERT curriculum using Docker AutoTrain to ensure it can provide relevant and accurate responses in the education domain.\n **Purpose**: This version of Llama has been trained specifically for educational purposes, focusing on answering science-related queries in a clear and simple manner to help students and teachers alike.\n""" } } # Reset the conversation def reset_conversation(): st.session_state.conversation = [] st.session_state.messages = [] return None # App title and description st.title("Sci-Mom 👩‍🏫 ") st.subheader("AI chatbot for Solving your doubts 📚 :)") # Custom description for SciMom in the sidebar st.sidebar.write("Built for my mom, with love ❤️. This model is pretrained with textbooks of Science NCERT.") st.sidebar.write("Base-Model used: Meta Llama, trained using: Docker AutoTrain.") # Add technical details in the sidebar st.sidebar.markdown(model_info["Meta-Llama-3-8B"]['description']) st.sidebar.markdown("*By Gokulnath ♔ *") # If model selection was needed (now removed) selected_model = "Meta-Llama-3-8B" # Only one model remains if "prev_option" not in st.session_state: st.session_state.prev_option = selected_model if st.session_state.prev_option != selected_model: st.session_state.messages = [] st.session_state.prev_option = selected_model reset_conversation() # Pull in the model we want to use repo_id = model_links[selected_model] # Initialize chat history if "messages" not in st.session_state: st.session_state.messages = [] # Display chat messages from history on app rerun for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) # Accept user input if prompt := st.chat_input("Ask Scimom!"): # Display user message in chat message container with st.chat_message("user"): st.markdown(prompt) st.session_state.messages.append({"role": "user", "content": prompt}) # Display assistant response in chat message container with st.chat_message("assistant"): try: stream = client.chat.completions.create( model=model_links[selected_model], messages=[ {"role": m["role"], "content": m["content"]} for m in st.session_state.messages ], temperature=0.5, # Default temperature setting stream=True, max_tokens=3000, ) response = st.write_stream(stream) except Exception as e: response = "😵‍💫 Something went wrong. Please try again later." st.write(response) st.write("This was the error message:") st.write(e) st.session_state.messages.append({"role": "assistant", "content": response})