import gradio as gr import os import re from pathlib import Path from langchain_community.vectorstores import Chroma from langchain.chains import ConversationalRetrievalChain from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.llms import HuggingFaceEndpoint from pathlib import Path import chromadb from unidecode import unidecode # List of allowed models allowed_llms = [ "mistralai/Mistral-7B-Instruct-v0.2", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.1", "google/gemma-7b-it", "google/gemma-2b-it", "HuggingFaceH4/zephyr-7b-beta", "HuggingFaceH4/zephyr-7b-gemma-v0.1", "meta-llama/Llama-2-7b-chat-hf" ] list_llm_simple = [os.path.basename(llm) for llm in allowed_llms] # Load PDF document and create doc splits def load_doc(list_file_path, chunk_size, chunk_overlap): loaders = [PyPDFLoader(x) for x in list_file_path] pages = [] for loader in loaders: pages.extend(loader.load()) text_splitter = RecursiveCharacterTextSplitter( chunk_size=chunk_size, chunk_overlap=chunk_overlap ) doc_splits = text_splitter.split_documents(pages) return doc_splits # Create vector database def create_db(splits, collection_name): embedding = HuggingFaceEmbeddings() embedding=embedding, client=new_client, collection_name=collection_name, ) return vectordb # Initialize langchain LLM chain def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): llm = HuggingFaceEndpoint( repo_id=llm_model, temperature=temperature, max_new_tokens=max_tokens, top_k=top_k, load_in_8bit=True, ) memory = ConversationBufferMemory( memory_key="chat_history", output_key='answer', return_messages=True ) retriever = vector_db.as_retriever() qa_chain = ConversationalRetrievalChain.from_llm( llm, retriever=retriever, chain_type="stuff", memory=memory, return_source_documents=True, verbose=False, ) return qa_chain # Generate collection name for vector database def create_collection_name(filepath): collection_name = Path(filepath).stem collection_name = unidecode(collection_name).replace(" ", "-") collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)[:50] if len(collection_name) < 3: collection_name = collection_name + 'xyz' if not collection_name[0].isalnum(): collection_name = 'A' + collection_name[1:] if not collection_name[-1].isalnum(): collection_name = collection_name[:-1] + 'Z' return collection_name # Initialize database def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()): list_file_path = [x.name for x in list_file_obj if x is not None] collection_name = create_collection_name(list_file_path[0]) doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap) vector_db = create_db(doc_splits, collection_name) return vector_db, collection_name, "Complete!" # Initialize LLM def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): llm_name = allowed_llms[llm_option] qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress) return qa_chain, "Complete!" # Format chat history def format_chat_history(message, chat_history): formatted_chat_history = [] for user_message, bot_message in chat_history: formatted_chat_history.append(f"User: {user_message}") formatted_chat_history.append(f"Assistant: {bot_message}") return formatted_chat_history # Conversation handling def conversation(qa_chain, message, history): formatted_chat_history = format_chat_history(message, history) response = qa_chain({"question": message, "chat_history": formatted_chat_history}) response_answer = response["answer"].split("Helpful Answer:")[-1] response_sources = response["source_documents"] new_history = history + [(message, response_answer)] response_details = [(src.page_content.strip(), src.metadata["page"] + 1) for src in response_sources[:3]] return qa_chain, gr.update(value=""), new_history, *sum(response_details, ()) # Gradio Interface def demo(): with gr.Blocks(theme="default") as demo: vector_db = gr.State() qa_chain = gr.State() collection_name = gr.State() gr.Markdown( """