import os import re from dataclasses import asdict import pandas as pd from langchain.callbacks import get_openai_callback from langchain.chains import LLMChain from langchain.chat_models import ChatOpenAI from langchain.document_loaders import DataFrameLoader from langchain.prompts import PromptTemplate from langchain.text_splitter import TokenTextSplitter from tqdm import tqdm from wandb.integration.langchain import WandbTracer import wandb from config import config def get_data(artifact_name: str, total_episodes: int = None): podcast_artifact = wandb.use_artifact(artifact_name, type="dataset") podcast_artifact_dir = podcast_artifact.download(config.root_artifact_dir) filename = artifact_name.split(":")[0].split("/")[-1] df = pd.read_csv(os.path.join(podcast_artifact_dir, f"{filename}.csv")) if total_episodes is not None: df = df.iloc[:total_episodes] return df def extract_questions(episode_df: pd.DataFrame): # load docs into langchain format loader = DataFrameLoader(episode_df, page_content_column="transcript") data = loader.load() # split the documents text_splitter = TokenTextSplitter.from_tiktoken_encoder(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(data) print(f"Number of documents for podcast {data[0].metadata['title']}: {len(docs)}") # initialize LLM llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0) # define prompt prompt = """You are provided with a short transcript from a podcast episode. Your task is to extract the relevant and most important questions one might ask from the transcript and present them in a bullet-point list. Ensure that the total number of questions is no more than 3. TRANSCRIPT: {text} QUESTIONS:""" prompt_template = PromptTemplate(template=prompt, input_variables=["text"]) pattern = r"\d+\.\s" que_by_llm = [] for doc in docs: llm_chain = LLMChain(llm=llm, prompt=prompt_template) out = llm_chain.run(doc) cleaned_ques = re.sub(pattern, "", out).split("\n") que_by_llm.extend(cleaned_ques) return que_by_llm if __name__ == "__main__": # initialize wandb tracer WandbTracer.init( { "project": config.project_name, "job_type": "extract_questions", "config": asdict(config), } ) # get data df = get_data(artifact_name=config.summarized_data_artifact) questions = [] with get_openai_callback() as cb: for episode in tqdm( df.iterrows(), total=len(df), desc="Extracting questions from episodes" ): episode_data = episode[1].to_frame().T episode_questions = extract_questions(episode_data) questions.append(episode_questions) print("*" * 25) print(cb) print("*" * 25) wandb.log( { "total_prompt_tokens": cb.prompt_tokens, "total_completion_tokens": cb.completion_tokens, "total_tokens": cb.total_tokens, "total_cost": cb.total_cost, } ) df["questions"] = questions # log to wandb artifact path_to_save = os.path.join(config.root_data_dir, "summarized_que_podcasts.csv") df.to_csv(path_to_save, index=False) artifact = wandb.Artifact("summarized_que_podcasts", type="dataset") artifact.add_file(path_to_save) wandb.log_artifact(artifact) # create wandb table df["questions"] = df["questions"].apply(lambda x: "\n".join(x)) table = wandb.Table(dataframe=df) wandb.log({"summarized_que_podcasts": table}) WandbTracer.finish()