Spaces:
Sleeping
Sleeping
ZhaohanM
commited on
Commit
•
8846369
1
Parent(s):
7c46397
FusionGDA
Browse files
.ipynb_checkpoints/model-checkpoint.sh
DELETED
@@ -1,24 +0,0 @@
|
|
1 |
-
#!/bin/bash
|
2 |
-
|
3 |
-
input_csv_path="$1"
|
4 |
-
output_csv_path="$2"
|
5 |
-
max_depth=6
|
6 |
-
device='cuda:0'
|
7 |
-
model_path_list=(
|
8 |
-
"../../save_model_ckp/gda_infoNCE_2024_GPU3090" \
|
9 |
-
)
|
10 |
-
|
11 |
-
cd ../src/finetune/
|
12 |
-
for save_model_path in ${model_path_list[@]}; do
|
13 |
-
num_leaves=$((2**($max_depth-1)))
|
14 |
-
python finetune.py \
|
15 |
-
--input_csv_path $input_csv_path \
|
16 |
-
--output_csv_path $output_csv_path \
|
17 |
-
--save_model_path $save_model_path \
|
18 |
-
--device $device \
|
19 |
-
--batch_size 128 \
|
20 |
-
--step "300" \
|
21 |
-
--use_pooled \
|
22 |
-
--num_leaves $num_leaves \
|
23 |
-
--max_depth $max_depth
|
24 |
-
done
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.ipynb_checkpoints/requirements-checkpoint.txt
DELETED
@@ -1,5 +0,0 @@
|
|
1 |
-
lightgbm
|
2 |
-
pytorch-metric-learning
|
3 |
-
torch
|
4 |
-
transformers
|
5 |
-
PyTDC
|
|
|
|
|
|
|
|
|
|
|
|
.ipynb_checkpoints/gda_api-checkpoint.py → app.py
RENAMED
File without changes
|
gda_api.py
DELETED
@@ -1,60 +0,0 @@
|
|
1 |
-
# -*- coding: utf-8 -*-
|
2 |
-
import gradio as gr
|
3 |
-
import pandas as pd
|
4 |
-
import os
|
5 |
-
import subprocess
|
6 |
-
|
7 |
-
def predict_top_100_genes(disease_id):
|
8 |
-
# Initialize paths
|
9 |
-
input_csv_path = '/data/downstream/{}_disease.csv'.format(disease_id)
|
10 |
-
output_csv_path = '/data/downstream/{}_top100.csv'.format(disease_id)
|
11 |
-
|
12 |
-
# Check if the output CSV already exists
|
13 |
-
if not os.path.exists(output_csv_path):
|
14 |
-
# Proceed with your existing code if the output file doesn't exist
|
15 |
-
df = pd.read_csv('/data/pretrain/disgenet_latest.csv')
|
16 |
-
df = df[df['proteinSeq'].notna()]
|
17 |
-
desired_diseaseDes = df[df['diseaseId'] == disease_id]['diseaseDes'].iloc[0]
|
18 |
-
related_proteins = df[df['diseaseDes'] == desired_diseaseDes]['proteinSeq'].unique()
|
19 |
-
df['score'] = df['proteinSeq'].isin(related_proteins).astype(int)
|
20 |
-
new_df = pd.DataFrame({
|
21 |
-
'diseaseId': disease_id,
|
22 |
-
'diseaseDes': desired_diseaseDes,
|
23 |
-
'geneSymbol': df['geneSymbol'],
|
24 |
-
'proteinSeq': df['proteinSeq'],
|
25 |
-
'score': df['score']
|
26 |
-
}).drop_duplicates().reset_index(drop=True)
|
27 |
-
|
28 |
-
new_df.to_csv(input_csv_path, index=False)
|
29 |
-
|
30 |
-
# Call the model script only if the output CSV does not exist
|
31 |
-
script_path = 'model.sh'
|
32 |
-
subprocess.run(['bash', script_path, input_csv_path, output_csv_path], check=True)
|
33 |
-
|
34 |
-
# Read the model output file or the existing file to get the top 100 genes
|
35 |
-
output_df = pd.read_csv(output_csv_path)
|
36 |
-
# Update here to select only the required columns and rename them
|
37 |
-
result_df = output_df[['geneSymbol', 'Prediction_score']].rename(columns={'geneSymbol': 'Gene', 'Prediction_score': 'Score'}).head(100)
|
38 |
-
|
39 |
-
return result_df
|
40 |
-
|
41 |
-
|
42 |
-
iface = gr.Interface(
|
43 |
-
fn=predict_top_100_genes,
|
44 |
-
inputs=gr.Textbox(lines=1, placeholder="Enter Disease ID Here...", label="Disease ID"),
|
45 |
-
outputs=gr.Dataframe(label="Predicted Top 100 Related Genes"),
|
46 |
-
title="Gene Disease Association Prediction",
|
47 |
-
description = (
|
48 |
-
"This AI model predicts the top 100 genes associated with a given disease based on 16,733 genes."
|
49 |
-
" To get started, you need a Disease ID (UMLS CUI), which can be obtained from the DisGeNET database. "
|
50 |
-
"\n\n**Steps to Obtain a Disease ID from DisGeNET:**\n"
|
51 |
-
"1. Visit the DisGeNET website: [https://www.disgenet.org/search](https://www.disgenet.org/search).\n"
|
52 |
-
"2. Use the search bar to enter your disease of interest. For instance, if you're interested in 'Alzheimer's Disease', type 'Alzheimer's Disease' into the search bar.\n"
|
53 |
-
"3. From the search results, identify the disease you're researching. The Disease ID (UMLS CUI) is listed alongside each disease name, e.g. C0002395.\n"
|
54 |
-
"4. Enter the Disease ID into the input box below and submit.\n\n"
|
55 |
-
"The DisGeNET database contains all known gene-disease associations and associated evidence. In addition, it is able to find the corresponding diseases based on a gene.\n"
|
56 |
-
"\n**The model will take about 18 minutes to inference a new disease.**\n"
|
57 |
-
)
|
58 |
-
)
|
59 |
-
|
60 |
-
iface.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/finetune/.ipynb_checkpoints/finetune-checkpoint.py
DELETED
@@ -1,416 +0,0 @@
|
|
1 |
-
import argparse
|
2 |
-
import os
|
3 |
-
import random
|
4 |
-
import string
|
5 |
-
import sys
|
6 |
-
import pandas as pd
|
7 |
-
from datetime import datetime
|
8 |
-
|
9 |
-
sys.path.append("../")
|
10 |
-
import numpy as np
|
11 |
-
import torch
|
12 |
-
import lightgbm as lgb
|
13 |
-
import sklearn.metrics as metrics
|
14 |
-
from sklearn.utils import class_weight
|
15 |
-
from sklearn.model_selection import train_test_split
|
16 |
-
from sklearn.metrics import accuracy_score, precision_recall_curve, f1_score, precision_recall_fscore_support,roc_auc_score
|
17 |
-
from torch.utils.data import DataLoader
|
18 |
-
from tqdm.auto import tqdm
|
19 |
-
from transformers import EsmTokenizer, EsmForMaskedLM, BertModel, BertTokenizer, AutoTokenizer, EsmModel
|
20 |
-
from utils.downstream_disgenet import DisGeNETProcessor
|
21 |
-
from utils.metric_learning_models import GDA_Metric_Learning
|
22 |
-
|
23 |
-
def parse_config():
|
24 |
-
parser = argparse.ArgumentParser()
|
25 |
-
parser.add_argument('-f')
|
26 |
-
parser.add_argument("--step", type=int, default=0)
|
27 |
-
parser.add_argument(
|
28 |
-
"--save_model_path",
|
29 |
-
type=str,
|
30 |
-
default=None,
|
31 |
-
help="path of the pretrained disease model located",
|
32 |
-
)
|
33 |
-
parser.add_argument(
|
34 |
-
"--prot_encoder_path",
|
35 |
-
type=str,
|
36 |
-
default="facebook/esm2_t33_650M_UR50D",
|
37 |
-
#"facebook/galactica-6.7b", "Rostlab/prot_bert" “facebook/esm2_t33_650M_UR50D”
|
38 |
-
help="path/name of protein encoder model located",
|
39 |
-
)
|
40 |
-
parser.add_argument(
|
41 |
-
"--disease_encoder_path",
|
42 |
-
type=str,
|
43 |
-
default="microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext",
|
44 |
-
help="path/name of textual pre-trained language model",
|
45 |
-
)
|
46 |
-
parser.add_argument("--reduction_factor", type=int, default=8)
|
47 |
-
parser.add_argument(
|
48 |
-
"--loss",
|
49 |
-
help="{ms_loss|infoNCE|cosine_loss|circle_loss|triplet_loss}}",
|
50 |
-
default="infoNCE",
|
51 |
-
)
|
52 |
-
parser.add_argument(
|
53 |
-
"--input_feature_save_path",
|
54 |
-
type=str,
|
55 |
-
default="../../data/processed_disease",
|
56 |
-
help="path of tokenized training data",
|
57 |
-
)
|
58 |
-
parser.add_argument(
|
59 |
-
"--agg_mode", default="mean_all_tok", type=str, help="{cls|mean|mean_all_tok}"
|
60 |
-
)
|
61 |
-
parser.add_argument("--batch_size", type=int, default=256)
|
62 |
-
parser.add_argument("--patience", type=int, default=5)
|
63 |
-
parser.add_argument("--num_leaves", type=int, default=5)
|
64 |
-
parser.add_argument("--max_depth", type=int, default=5)
|
65 |
-
parser.add_argument("--lr", type=float, default=0.35)
|
66 |
-
parser.add_argument("--dropout", type=float, default=0.1)
|
67 |
-
parser.add_argument("--test", type=int, default=0)
|
68 |
-
parser.add_argument("--use_miner", action="store_true")
|
69 |
-
parser.add_argument("--miner_margin", default=0.2, type=float)
|
70 |
-
parser.add_argument("--freeze_prot_encoder", action="store_true")
|
71 |
-
parser.add_argument("--freeze_disease_encoder", action="store_true")
|
72 |
-
parser.add_argument("--use_adapter", action="store_true")
|
73 |
-
parser.add_argument("--use_pooled", action="store_true")
|
74 |
-
parser.add_argument("--device", type=str, default="cpu")
|
75 |
-
parser.add_argument(
|
76 |
-
"--use_both_feature",
|
77 |
-
help="use the both features of gnn_feature_v1_samples and pretrained models",
|
78 |
-
action="store_true",
|
79 |
-
)
|
80 |
-
parser.add_argument(
|
81 |
-
"--use_v1_feature_only",
|
82 |
-
help="use the features of gnn_feature_v1_samples only",
|
83 |
-
action="store_true",
|
84 |
-
)
|
85 |
-
parser.add_argument(
|
86 |
-
"--save_path_prefix",
|
87 |
-
type=str,
|
88 |
-
default="../../save_model_ckp/finetune/",
|
89 |
-
help="save the result in which directory",
|
90 |
-
)
|
91 |
-
parser.add_argument(
|
92 |
-
"--save_name", default="fine_tune", type=str, help="the name of the saved file"
|
93 |
-
)
|
94 |
-
# Add argument for input CSV file path
|
95 |
-
parser.add_argument("--input_csv_path", type=str, required=True, help="Path to the input CSV file.")
|
96 |
-
|
97 |
-
# Add argument for output CSV file path
|
98 |
-
parser.add_argument("--output_csv_path", type=str, required=True, help="Path to the output CSV file.")
|
99 |
-
return parser.parse_args()
|
100 |
-
|
101 |
-
def get_feature(model, dataloader, args):
|
102 |
-
x = list()
|
103 |
-
y = list()
|
104 |
-
with torch.no_grad():
|
105 |
-
for step, batch in tqdm(enumerate(dataloader)):
|
106 |
-
prot_input_ids, prot_attention_mask, dis_input_ids, dis_attention_mask, y1 = batch
|
107 |
-
prot_input = {
|
108 |
-
'input_ids': prot_input_ids.to(args.device),
|
109 |
-
'attention_mask': prot_attention_mask.to(args.device)
|
110 |
-
}
|
111 |
-
dis_input = {
|
112 |
-
'input_ids': dis_input_ids.to(args.device),
|
113 |
-
'attention_mask': dis_attention_mask.to(args.device)
|
114 |
-
}
|
115 |
-
feature_output = model.predict(prot_input, dis_input)
|
116 |
-
x1 = feature_output.cpu().numpy()
|
117 |
-
x.append(x1)
|
118 |
-
y.append(y1.cpu().numpy())
|
119 |
-
x = np.concatenate(x, axis=0)
|
120 |
-
y = np.concatenate(y, axis=0)
|
121 |
-
return x, y
|
122 |
-
|
123 |
-
|
124 |
-
def encode_pretrained_feature(args, disGeNET):
|
125 |
-
input_feat_file = os.path.join(
|
126 |
-
args.input_feature_save_path,
|
127 |
-
f"{args.model_short}_{args.step}_use_{'pooled' if args.use_pooled else 'cls'}_feat.npz",
|
128 |
-
)
|
129 |
-
|
130 |
-
if os.path.exists(input_feat_file):
|
131 |
-
print(f"load prior feature data from {input_feat_file}.")
|
132 |
-
loaded = np.load(input_feat_file)
|
133 |
-
x_train, y_train = loaded["x_train"], loaded["y_train"]
|
134 |
-
x_valid, y_valid = loaded["x_valid"], loaded["y_valid"]
|
135 |
-
# x_test, y_test = loaded["x_test"], loaded["y_test"]
|
136 |
-
|
137 |
-
prot_tokenizer = EsmTokenizer.from_pretrained(args.prot_encoder_path, do_lower_case=False)
|
138 |
-
# prot_tokenizer = BertTokenizer.from_pretrained(args.prot_encoder_path, do_lower_case=False)
|
139 |
-
print("prot_tokenizer", len(prot_tokenizer))
|
140 |
-
disease_tokenizer = BertTokenizer.from_pretrained(args.disease_encoder_path)
|
141 |
-
print("disease_tokenizer", len(disease_tokenizer))
|
142 |
-
|
143 |
-
prot_model = EsmModel.from_pretrained(args.prot_encoder_path)
|
144 |
-
# prot_model = BertModel.from_pretrained(args.prot_encoder_path)
|
145 |
-
disease_model = BertModel.from_pretrained(args.disease_encoder_path)
|
146 |
-
|
147 |
-
if args.save_model_path:
|
148 |
-
model = GDA_Metric_Learning(prot_model, disease_model, 1280, 768, args)
|
149 |
-
|
150 |
-
if args.use_adapter:
|
151 |
-
prot_model_path = os.path.join(
|
152 |
-
args.save_model_path, f"prot_adapter_step_{args.step}"
|
153 |
-
)
|
154 |
-
disease_model_path = os.path.join(
|
155 |
-
args.save_model_path, f"disease_adapter_step_{args.step}"
|
156 |
-
)
|
157 |
-
model.load_adapters(prot_model_path, disease_model_path)
|
158 |
-
else:
|
159 |
-
prot_model_path = os.path.join(
|
160 |
-
args.save_model_path, f"step_{args.step}_model.bin"
|
161 |
-
)# , f"step_{args.step}_model.bin"
|
162 |
-
disease_model_path = os.path.join(
|
163 |
-
args.save_model_path, f"step_{args.step}_model.bin"
|
164 |
-
)
|
165 |
-
model.non_adapters(prot_model_path, disease_model_path)
|
166 |
-
|
167 |
-
model = model.to(args.device)
|
168 |
-
prot_model = model.prot_encoder
|
169 |
-
disease_model = model.disease_encoder
|
170 |
-
print(f"loaded prior model {args.save_model_path}.")
|
171 |
-
|
172 |
-
def collate_fn_batch_encoding(batch):
|
173 |
-
query1, query2, scores = zip(*batch)
|
174 |
-
|
175 |
-
query_encodings1 = prot_tokenizer.batch_encode_plus(
|
176 |
-
list(query1),
|
177 |
-
max_length=512,
|
178 |
-
padding="max_length",
|
179 |
-
truncation=True,
|
180 |
-
add_special_tokens=True,
|
181 |
-
return_tensors="pt",
|
182 |
-
)
|
183 |
-
query_encodings2 = disease_tokenizer.batch_encode_plus(
|
184 |
-
list(query2),
|
185 |
-
max_length=512,
|
186 |
-
padding="max_length",
|
187 |
-
truncation=True,
|
188 |
-
add_special_tokens=True,
|
189 |
-
return_tensors="pt",
|
190 |
-
)
|
191 |
-
scores = torch.tensor(list(scores))
|
192 |
-
attention_mask1 = query_encodings1["attention_mask"].bool()
|
193 |
-
attention_mask2 = query_encodings2["attention_mask"].bool()
|
194 |
-
|
195 |
-
return query_encodings1["input_ids"], attention_mask1, query_encodings2["input_ids"], attention_mask2, scores
|
196 |
-
|
197 |
-
test_examples = disGeNET.get_test_examples(args.test)
|
198 |
-
print(f"get test examples: {len(test_examples)}")
|
199 |
-
|
200 |
-
test_dataloader = DataLoader(
|
201 |
-
test_examples,
|
202 |
-
batch_size=args.batch_size,
|
203 |
-
shuffle=False,
|
204 |
-
collate_fn=collate_fn_batch_encoding,
|
205 |
-
)
|
206 |
-
print( f"dataset loaded: test-{len(test_examples)}")
|
207 |
-
|
208 |
-
x_test, y_test = get_feature(model, test_dataloader, args)
|
209 |
-
|
210 |
-
else:
|
211 |
-
prot_tokenizer = EsmTokenizer.from_pretrained(args.prot_encoder_path, do_lower_case=False)
|
212 |
-
# prot_tokenizer = BertTokenizer.from_pretrained(args.prot_encoder_path, do_lower_case=False)
|
213 |
-
print("prot_tokenizer", len(prot_tokenizer))
|
214 |
-
disease_tokenizer = BertTokenizer.from_pretrained(args.disease_encoder_path)
|
215 |
-
print("disease_tokenizer", len(disease_tokenizer))
|
216 |
-
|
217 |
-
prot_model = EsmModel.from_pretrained(args.prot_encoder_path)
|
218 |
-
# prot_model = BertModel.from_pretrained(args.prot_encoder_path)
|
219 |
-
disease_model = BertModel.from_pretrained(args.disease_encoder_path)
|
220 |
-
|
221 |
-
if args.save_model_path:
|
222 |
-
model = GDA_Metric_Learning(prot_model, disease_model, 1280, 768, args)
|
223 |
-
|
224 |
-
if args.use_adapter:
|
225 |
-
prot_model_path = os.path.join(
|
226 |
-
args.save_model_path, f"prot_adapter_step_{args.step}"
|
227 |
-
)
|
228 |
-
disease_model_path = os.path.join(
|
229 |
-
args.save_model_path, f"disease_adapter_step_{args.step}"
|
230 |
-
)
|
231 |
-
model.load_adapters(prot_model_path, disease_model_path)
|
232 |
-
else:
|
233 |
-
prot_model_path = os.path.join(
|
234 |
-
args.save_model_path, f"step_{args.step}_model.bin"
|
235 |
-
)# , f"step_{args.step}_model.bin"
|
236 |
-
disease_model_path = os.path.join(
|
237 |
-
args.save_model_path, f"step_{args.step}_model.bin"
|
238 |
-
)
|
239 |
-
model.non_adapters(prot_model_path, disease_model_path)
|
240 |
-
|
241 |
-
model = model.to(args.device)
|
242 |
-
prot_model = model.prot_encoder
|
243 |
-
disease_model = model.disease_encoder
|
244 |
-
print(f"loaded prior model {args.save_model_path}.")
|
245 |
-
|
246 |
-
def collate_fn_batch_encoding(batch):
|
247 |
-
query1, query2, scores = zip(*batch)
|
248 |
-
|
249 |
-
query_encodings1 = prot_tokenizer.batch_encode_plus(
|
250 |
-
list(query1),
|
251 |
-
max_length=512,
|
252 |
-
padding="max_length",
|
253 |
-
truncation=True,
|
254 |
-
add_special_tokens=True,
|
255 |
-
return_tensors="pt",
|
256 |
-
)
|
257 |
-
query_encodings2 = disease_tokenizer.batch_encode_plus(
|
258 |
-
list(query2),
|
259 |
-
max_length=512,
|
260 |
-
padding="max_length",
|
261 |
-
truncation=True,
|
262 |
-
add_special_tokens=True,
|
263 |
-
return_tensors="pt",
|
264 |
-
)
|
265 |
-
scores = torch.tensor(list(scores))
|
266 |
-
attention_mask1 = query_encodings1["attention_mask"].bool()
|
267 |
-
attention_mask2 = query_encodings2["attention_mask"].bool()
|
268 |
-
|
269 |
-
return query_encodings1["input_ids"], attention_mask1, query_encodings2["input_ids"], attention_mask2, scores
|
270 |
-
|
271 |
-
train_examples = disGeNET.get_train_examples(args.test)
|
272 |
-
print(f"get training examples: {len(train_examples)}")
|
273 |
-
valid_examples = disGeNET.get_val_examples(args.test)
|
274 |
-
print(f"get validation examples: {len(valid_examples)}")
|
275 |
-
test_examples = disGeNET.get_test_examples(args.test)
|
276 |
-
print(f"get test examples: {len(test_examples)}")
|
277 |
-
|
278 |
-
train_dataloader = DataLoader(
|
279 |
-
train_examples,
|
280 |
-
batch_size=args.batch_size,
|
281 |
-
shuffle=False,
|
282 |
-
collate_fn=collate_fn_batch_encoding,
|
283 |
-
)
|
284 |
-
valid_dataloader = DataLoader(
|
285 |
-
valid_examples,
|
286 |
-
batch_size=args.batch_size,
|
287 |
-
shuffle=False,
|
288 |
-
collate_fn=collate_fn_batch_encoding,
|
289 |
-
)
|
290 |
-
test_dataloader = DataLoader(
|
291 |
-
test_examples,
|
292 |
-
batch_size=args.batch_size,
|
293 |
-
shuffle=False,
|
294 |
-
collate_fn=collate_fn_batch_encoding,
|
295 |
-
)
|
296 |
-
print( f"dataset loaded: train-{len(train_examples)}; valid-{len(valid_examples)}; test-{len(test_examples)}")
|
297 |
-
|
298 |
-
x_train, y_train = get_feature(model, train_dataloader, args)
|
299 |
-
x_valid, y_valid = get_feature(model, valid_dataloader, args)
|
300 |
-
x_test, y_test = get_feature(model, test_dataloader, args)
|
301 |
-
|
302 |
-
# Save input feature to reduce encoding time
|
303 |
-
np.savez_compressed(
|
304 |
-
input_feat_file,
|
305 |
-
x_train=x_train,
|
306 |
-
y_train=y_train,
|
307 |
-
x_valid=x_valid,
|
308 |
-
y_valid=y_valid,
|
309 |
-
)
|
310 |
-
print(f"save input feature into {input_feat_file}")
|
311 |
-
# Save input feature to reduce encoding time
|
312 |
-
return x_train, y_train, x_valid, y_valid, x_test, y_test
|
313 |
-
|
314 |
-
|
315 |
-
def train(args):
|
316 |
-
# defining parameters
|
317 |
-
if args.save_model_path:
|
318 |
-
args.model_short = (
|
319 |
-
args.save_model_path.split("/")[-1]
|
320 |
-
)
|
321 |
-
print(f"model name {args.model_short}")
|
322 |
-
|
323 |
-
else:
|
324 |
-
args.model_short = (
|
325 |
-
args.disease_encoder_path.split("/")[-1]
|
326 |
-
)
|
327 |
-
print(f"model name {args.model_short}")
|
328 |
-
|
329 |
-
# disGeNET = DisGeNETProcessor()
|
330 |
-
disGeNET = DisGeNETProcessor(input_csv_path=args.input_csv_path)
|
331 |
-
|
332 |
-
|
333 |
-
x_train, y_train, x_valid, y_valid, x_test, y_test = encode_pretrained_feature(args, disGeNET)
|
334 |
-
|
335 |
-
print("train: ", x_train.shape, y_train.shape)
|
336 |
-
print("valid: ", x_valid.shape, y_valid.shape)
|
337 |
-
print("test: ", x_test.shape, y_test.shape)
|
338 |
-
|
339 |
-
params = {
|
340 |
-
"task": "train", # "predict" train
|
341 |
-
"boosting": "gbdt", # "The options are "gbdt" (traditional Gradient Boosting Decision Tree), "rf" (Random Forest), "dart" (Dropouts meet Multiple Additive Regression Trees), or "goss" (Gradient-based One-Side Sampling). The default is "gbdt"."
|
342 |
-
"objective": "binary",
|
343 |
-
"num_leaves": args.num_leaves,
|
344 |
-
"early_stopping_round": 30,
|
345 |
-
"max_depth": args.max_depth,
|
346 |
-
"learning_rate": args.lr,
|
347 |
-
"metric": "binary_logloss", #"metric": "l2","binary_logloss" "auc"
|
348 |
-
"verbose": 1,
|
349 |
-
}
|
350 |
-
|
351 |
-
lgb_train = lgb.Dataset(x_train, y_train)
|
352 |
-
lgb_valid = lgb.Dataset(x_valid, y_valid)
|
353 |
-
lgb_eval = lgb.Dataset(x_test, y_test, reference=lgb_train)
|
354 |
-
|
355 |
-
# fitting the model
|
356 |
-
model = lgb.train(
|
357 |
-
params, train_set=lgb_train, valid_sets=lgb_valid)
|
358 |
-
|
359 |
-
# prediction
|
360 |
-
valid_y_pred = model.predict(x_valid)
|
361 |
-
test_y_pred = model.predict(x_test)
|
362 |
-
|
363 |
-
# predict liver fibrosis
|
364 |
-
predictions_df = pd.DataFrame(test_y_pred, columns=["Prediction_score"])
|
365 |
-
# data_test = pd.read_csv('/nfs/dpa_pretrain/data/downstream/GDA_Data/test_tdc.csv')
|
366 |
-
data_test = pd.read_csv(args.input_csv_path)
|
367 |
-
predictions = pd.concat([data_test, predictions_df], axis=1)
|
368 |
-
# filtered_dataset = test_dataset_with_predictions[test_dataset_with_predictions['diseaseId'] == 'C0009714']
|
369 |
-
predictions.sort_values(by='Prediction_score', ascending=False, inplace=True)
|
370 |
-
top_100_predictions = predictions.head(100)
|
371 |
-
top_100_predictions.to_csv(args.output_csv_path, index=False)
|
372 |
-
|
373 |
-
# Accuracy
|
374 |
-
y_pred = model.predict(x_test, num_iteration=model.best_iteration)
|
375 |
-
y_pred[y_pred >= 0.5] = 1
|
376 |
-
y_pred[y_pred < 0.5] = 0
|
377 |
-
accuracy = accuracy_score(y_test, y_pred)
|
378 |
-
|
379 |
-
# AUC
|
380 |
-
valid_roc_auc_score = metrics.roc_auc_score(y_valid, valid_y_pred)
|
381 |
-
valid_average_precision_score = metrics.average_precision_score(
|
382 |
-
y_valid, valid_y_pred
|
383 |
-
)
|
384 |
-
test_roc_auc_score = metrics.roc_auc_score(y_test, test_y_pred)
|
385 |
-
test_average_precision_score = metrics.average_precision_score(y_test, test_y_pred)
|
386 |
-
|
387 |
-
# AUPR
|
388 |
-
valid_aupr = metrics.average_precision_score(y_valid, valid_y_pred)
|
389 |
-
test_aupr = metrics.average_precision_score(y_test, test_y_pred)
|
390 |
-
|
391 |
-
# Fmax
|
392 |
-
valid_precision, valid_recall, valid_thresholds = precision_recall_curve(y_valid, valid_y_pred)
|
393 |
-
valid_fmax = (2 * valid_precision * valid_recall / (valid_precision + valid_recall)).max()
|
394 |
-
test_precision, test_recall, test_thresholds = precision_recall_curve(y_test, test_y_pred)
|
395 |
-
test_fmax = (2 * test_precision * test_recall / (test_precision + test_recall)).max()
|
396 |
-
|
397 |
-
# F1
|
398 |
-
valid_f1 = f1_score(y_valid, valid_y_pred >= 0.5)
|
399 |
-
test_f1 = f1_score(y_test, test_y_pred >= 0.5)
|
400 |
-
|
401 |
-
|
402 |
-
if __name__ == "__main__":
|
403 |
-
args = parse_config()
|
404 |
-
if torch.cuda.is_available():
|
405 |
-
print("cuda is available.")
|
406 |
-
print(f"current device {args}.")
|
407 |
-
else:
|
408 |
-
args.device = "cpu"
|
409 |
-
timestamp_str = datetime.now().strftime("%Y%m%d_%H%M%S")
|
410 |
-
random_str = "".join([random.choice(string.ascii_lowercase) for n in range(6)])
|
411 |
-
best_model_dir = (
|
412 |
-
f"{args.save_path_prefix}{args.save_name}_{timestamp_str}_{random_str}/"
|
413 |
-
)
|
414 |
-
os.makedirs(best_model_dir)
|
415 |
-
args.save_name = best_model_dir
|
416 |
-
train(args)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|