import openai import llama_index import cryptography import cryptography.fernet import huggingface_hub import huggingface_hub.hf_api import json import os import gradio class HFace_Pluto(object): # initialize the object def __init__(self, name="Pluto",*args, **kwargs): super(HFace_Pluto, self).__init__(*args, **kwargs) self.author = "Duc Haba, Girish" self.name = name self._ph() self._pp("Hello from class", str(self.__class__) + " Class: " + str(self.__class__.__name__)) self._pp("Code name", self.name) self._pp("Author is", self.author) self._ph() # # define class var for stable division self._device = 'cuda' self._steps = [3,8,21,55,89,144] self._guidances = [1.1,3.0,5.0,8.0,13.0,21.0] self._xkeyfile = '.xoxo' self._models = [] self._seed = 667 # sum of walnut in ascii (or Angle 667) self._width = 512 self._height = 512 self._step = 50 self._guidances = 7.5 self._llama_query_engine = None self._llama_index_doc = None #self._generator = torch.Generator(device='cuda') self.pipes = [] self.prompts = [] self.images = [] self.seeds = [] self.fname_id = 0 self.dname_img = "img_colab/" self._huggingface_key="gAAAAABkgtmOIjpnjwXFWmgh1j2et2kMjHUze-ym6h3BieAp34Sqkqv3EVYvRinETvpw-kXu7RSRl5_9FqrYe-7unfakMvMkU8nHrfB3hBSC76ZTXwkVSzlN0RfBNs9NL8BGjaSJ8mz8" self._gpt_key="'gAAAAABkgtoTOLPegnxNIAfBfAda17h5HIHTS_65bobO3SdDlJam07AHGrcolvk9c6IWNJtTTxaCb8_JtWnLz0Y5h9doyfL-nJZggeQ6kLtaD4XwZYcG-AtYNNGCnJzVt9AaysPDnu-KWVhnJSe-DyH0oOO33doE0g=='" self._fkey="=cvsOPRcWD6JONmdr4Sh6-PqF6nT1InYh965mI8f_sef" self._color_primary = '#2780e3' #blue self._color_secondary = '#373a3c' #dark gray self._color_success = '#3fb618' #green self._color_info = '#9954bb' #purple self._color_warning = '#ff7518' #orange self._color_danger = '#ff0039' #red self._color_mid_gray = '#495057' return # # pretty print output name-value line def _pp(self, a, b,is_print=True): # print("%34s : %s" % (str(a), str(b))) x = f'{"%34s" % str(a)} : {str(b)}' y = None if (is_print): print(x) else: y = x return y # # pretty print the header or footer lines def _ph(self,is_print=True): x = f'{"-"*34} : {"-"*34}' y = None if (is_print): print(x) else: y = x return y # def push_hface_files(self, hf_names, hf_space="girishlkiran/ct", local_dir="/content/"): f = str(hf_names) + " is not iteratable, type: " + str(type(hf_names)) try: for f in hf_names: lo = local_dir + f huggingface_hub.upload_file( path_or_fileobj=lo, path_in_repo=f, repo_id=hf_space, repo_type=huggingface_hub.REPO_TYPE_SPACE) except Exception as e: self._pp("*Error", e) return # def push_hface_folder(self, hf_folder, hf_space_id, hf_dest_folder=None): api = huggingface_hub.HfApi() api.upload_folder(folder_path=hf_folder, repo_id=hf_space_id, path_in_repo=hf_dest_folder, repo_type="space") return # def write_file(self,fname, txt): f = open(fname, "w") f.writelines("\n".join(txt)) f.close() return # def _fetch_crypt(self,is_generate=False): s=self._fkey[::-1] if (is_generate): s=open(self._xkeyfile, "rb").read() return s # def _gen_key(self): key = cryptography.fernet.Fernet.generate_key() with open(self._xkeyfile, "wb") as key_file: key_file.write(key) return # def _decrypt_it(self, x): y = self._fetch_crypt() f = cryptography.fernet.Fernet(y) m = f.decrypt(x) return m.decode() # def _encrypt_it(self, x): key = self._fetch_crypt() p = x.encode() f = cryptography.fernet.Fernet(key) y = f.encrypt(p) return y # def _login_hface(self): huggingface_hub.login(self._decrypt_it(self._huggingface_key), add_to_git_credential=True) # non-blocking login self._ph() return # def _setup_openai(self,key=None): if (key is None): key = self._decrypt_it(self._gpt_key) # openai.api_key = key os.environ["OPENAI_API_KEY"] = key return # def _fetch_index_files(self,llama_ix): res = [] x = llama_ix.ref_doc_info for val in x.values(): jdata = json.loads(val.to_json()) fname = jdata['extra_info']['file_name'] res.append(fname) # remove dublication name res = list(set(res)) return res # add module/method # import functools def add_method(cls): def decorator(func): @functools.wraps(func) def wrapper(*args, **kwargs): return func(*args, **kwargs) setattr(cls, func.__name__, wrapper) return func # returning func means func can still be used normally return decorator # monty = HFace_Pluto("Monty") monty._login_hface() monty._ph() monty._setup_openai() @add_method(HFace_Pluto) def load_llama_index(self,vindex='vector_index',vpath='./index_storage'): try: storage_context = llama_index.StorageContext.from_defaults(persist_dir=vpath) # load index self._llama_index_doc = llama_index.load_index_from_storage(storage_context, index_id=vindex) print(f'Index doc are: {self._fetch_index_files(self._llama_index_doc)}') except Exception as e: print('**Error: can not load index, check the index_storage directory or the GPT auth token') print('If do not have index tokens then run the .gen_llama_index() function') print(f'Exception: {e}') return monty.load_llama_index() @add_method(HFace_Pluto) def ask_me(self, p, ll_sign_in_member='Girish' , ll_engine='Humana'): self._llama_query_engine = self._llama_index_doc.as_query_engine() ll_engine = self._llama_query_engine px = f'My name is {ll_sign_in_member}, and I want answer to the following: {p}.' print("##### " + px) resp = ll_engine.query(px) return resp in_box = [gradio.Textbox(lines=1, label="Your Humana request", placeholder="Your Humana request...see example if you need help.") ,gradio.Radio(["Girish"], label="Login Member", value='Girish', info="Who had login?") ,gradio.Radio(["Humana"], label="Login Member", value='Humana', info="Fine-Tune LLM for:") ] out_box = [gradio.Textbox(label="Humana response:")] # title = "Humana and C&T Fine-tune LLM model" desc = '*Note: This model is fine-tuned by YML using GPT3.5 as the base LLM.' arti = '