import os import sys import json import argparse import subprocess import spaces now_dir = os.getcwd() sys.path.append(now_dir) from rvc.configs.config import Config from rvc.lib.tools.prerequisites_download import prequisites_download_pipeline from rvc.infer.infer import infer_pipeline from rvc.lib.tools.model_download import model_download_pipeline config = Config() current_script_directory = os.path.dirname(os.path.realpath(__file__)) logs_path = os.path.join(current_script_directory, "logs") # Get TTS Voices with open(os.path.join("rvc", "lib", "tools", "tts_voices.json"), "r") as f: voices_data = json.load(f) locales = list({voice["Locale"] for voice in voices_data}) # Infer @spaces.GPU def run_infer_script( f0up_key, filter_radius, index_rate, rms_mix_rate, protect, hop_length, f0method, input_path, output_path, pth_path, index_path, split_audio, f0autotune, clean_audio, clean_strength, export_format, embedder_model, embedder_model_custom, upscale_audio, ): f0autotune = "True" if str(f0autotune) == "True" else "False" clean_audio = "True" if str(clean_audio) == "True" else "False" upscale_audio = "True" if str(upscale_audio) == "True" else "False" infer_pipeline( f0up_key, filter_radius, index_rate, rms_mix_rate, protect, hop_length, f0method, input_path, output_path, pth_path, index_path, split_audio, f0autotune, clean_audio, clean_strength, export_format, embedder_model, embedder_model_custom, upscale_audio, ) return f"File {input_path} inferred successfully.", output_path.replace( ".wav", f".{export_format.lower()}" ) # Batch infer @spaces.GPU def run_batch_infer_script( f0up_key, filter_radius, index_rate, rms_mix_rate, protect, hop_length, f0method, input_folder, output_folder, pth_path, index_path, split_audio, f0autotune, clean_audio, clean_strength, export_format, embedder_model, embedder_model_custom, upscale_audio, ): f0autotune = "True" if str(f0autotune) == "True" else "False" clean_audio = "True" if str(clean_audio) == "True" else "False" upscale_audio = "True" if str(upscale_audio) == "True" else "False" audio_files = [ f for f in os.listdir(input_folder) if f.endswith((".mp3", ".wav", ".flac")) ] print(f"Detected {len(audio_files)} audio files for inference.") for audio_file in audio_files: if "_output" in audio_file: pass else: input_path = os.path.join(input_folder, audio_file) output_file_name = os.path.splitext(os.path.basename(audio_file))[0] output_path = os.path.join( output_folder, f"{output_file_name}_output{os.path.splitext(audio_file)[1]}", ) print(f"Inferring {input_path}...") infer_pipeline( f0up_key, filter_radius, index_rate, rms_mix_rate, protect, hop_length, f0method, input_path, output_path, pth_path, index_path, split_audio, f0autotune, clean_audio, clean_strength, export_format, embedder_model, embedder_model_custom, upscale_audio, ) return f"Files from {input_folder} inferred successfully." # TTS @spaces.GPU def run_tts_script( tts_text, tts_voice, tts_rate, f0up_key, filter_radius, index_rate, rms_mix_rate, protect, hop_length, f0method, output_tts_path, output_rvc_path, pth_path, index_path, split_audio, f0autotune, clean_audio, clean_strength, export_format, embedder_model, embedder_model_custom, upscale_audio, ): f0autotune = "True" if str(f0autotune) == "True" else "False" clean_audio = "True" if str(clean_audio) == "True" else "False" upscale_audio = "True" if str(upscale_audio) == "True" else "False" tts_script_path = os.path.join("rvc", "lib", "tools", "tts.py") if os.path.exists(output_tts_path): os.remove(output_tts_path) command_tts = [ "python", tts_script_path, tts_text, tts_voice, str(tts_rate), output_tts_path, ] subprocess.run(command_tts) infer_pipeline( f0up_key, filter_radius, index_rate, rms_mix_rate, protect, hop_length, f0method, output_tts_path, output_rvc_path, pth_path, index_path, split_audio, f0autotune, clean_audio, clean_strength, export_format, embedder_model, embedder_model_custom, upscale_audio, ) return f"Text {tts_text} synthesized successfully.", output_rvc_path.replace( ".wav", f".{export_format.lower()}" ) # Download def run_download_script(model_link): model_download_pipeline(model_link) return f"Model downloaded successfully." # Prerequisites def run_prerequisites_script(pretraineds_v1, pretraineds_v2, models, exe): prequisites_download_pipeline(pretraineds_v1, pretraineds_v2, models, exe) return "Prerequisites installed successfully." # Parse arguments def parse_arguments(): parser = argparse.ArgumentParser( description="Run the main.py script with specific parameters." ) subparsers = parser.add_subparsers( title="subcommands", dest="mode", help="Choose a mode" ) # Parser for 'infer' mode infer_parser = subparsers.add_parser("infer", help="Run inference") infer_parser.add_argument( "--f0up_key", type=str, help="Value for f0up_key", choices=[str(i) for i in range(-24, 25)], default="0", ) infer_parser.add_argument( "--filter_radius", type=str, help="Value for filter_radius", choices=[str(i) for i in range(11)], default="3", ) infer_parser.add_argument( "--index_rate", type=str, help="Value for index_rate", choices=[str(i / 10) for i in range(11)], default="0.3", ) infer_parser.add_argument( "--rms_mix_rate", type=str, help="Value for rms_mix_rate", choices=[str(i / 10) for i in range(11)], default="1", ) infer_parser.add_argument( "--protect", type=str, help="Value for protect", choices=[str(i / 10) for i in range(6)], default="0.33", ) infer_parser.add_argument( "--hop_length", type=str, help="Value for hop_length", choices=[str(i) for i in range(1, 513)], default="128", ) infer_parser.add_argument( "--f0method", type=str, help="Value for f0method", choices=[ "pm", "harvest", "dio", "crepe", "crepe-tiny", "rmvpe", "fcpe", "hybrid[crepe+rmvpe]", "hybrid[crepe+fcpe]", "hybrid[rmvpe+fcpe]", "hybrid[crepe+rmvpe+fcpe]", ], default="rmvpe", ) infer_parser.add_argument("--input_path", type=str, help="Input path") infer_parser.add_argument("--output_path", type=str, help="Output path") infer_parser.add_argument("--pth_path", type=str, help="Path to the .pth file") infer_parser.add_argument( "--index_path", type=str, help="Path to the .index file", ) infer_parser.add_argument( "--split_audio", type=str, help="Enable split audio", choices=["True", "False"], default="False", ) infer_parser.add_argument( "--f0autotune", type=str, help="Enable autotune", choices=["True", "False"], default="False", ) infer_parser.add_argument( "--clean_audio", type=str, help="Enable clean audio", choices=["True", "False"], default="False", ) infer_parser.add_argument( "--clean_strength", type=str, help="Value for clean_strength", choices=[str(i / 10) for i in range(11)], default="0.7", ) infer_parser.add_argument( "--export_format", type=str, help="Export format", choices=["WAV", "MP3", "FLAC", "OGG", "M4A"], default="WAV", ) infer_parser.add_argument( "--embedder_model", type=str, help="Embedder model", choices=["contentvec", "hubert", "custom"], default="hubert", ) infer_parser.add_argument( "--embedder_model_custom", type=str, help="Custom Embedder model", default=None, ) infer_parser.add_argument( "--upscale_audio", type=str, help="Enable audio upscaling", choices=["True", "False"], default="False", ) # Parser for 'batch_infer' mode batch_infer_parser = subparsers.add_parser( "batch_infer", help="Run batch inference" ) batch_infer_parser.add_argument( "--f0up_key", type=str, help="Value for f0up_key", choices=[str(i) for i in range(-24, 25)], default="0", ) batch_infer_parser.add_argument( "--filter_radius", type=str, help="Value for filter_radius", choices=[str(i) for i in range(11)], default="3", ) batch_infer_parser.add_argument( "--index_rate", type=str, help="Value for index_rate", choices=[str(i / 10) for i in range(11)], default="0.3", ) batch_infer_parser.add_argument( "--rms_mix_rate", type=str, help="Value for rms_mix_rate", choices=[str(i / 10) for i in range(11)], default="1", ) batch_infer_parser.add_argument( "--protect", type=str, help="Value for protect", choices=[str(i / 10) for i in range(6)], default="0.33", ) batch_infer_parser.add_argument( "--hop_length", type=str, help="Value for hop_length", choices=[str(i) for i in range(1, 513)], default="128", ) batch_infer_parser.add_argument( "--f0method", type=str, help="Value for f0method", choices=[ "pm", "harvest", "dio", "crepe", "crepe-tiny", "rmvpe", "fcpe", "hybrid[crepe+rmvpe]", "hybrid[crepe+fcpe]", "hybrid[rmvpe+fcpe]", "hybrid[crepe+rmvpe+fcpe]", ], default="rmvpe", ) batch_infer_parser.add_argument("--input_folder", type=str, help="Input folder") batch_infer_parser.add_argument("--output_folder", type=str, help="Output folder") batch_infer_parser.add_argument( "--pth_path", type=str, help="Path to the .pth file" ) batch_infer_parser.add_argument( "--index_path", type=str, help="Path to the .index file", ) batch_infer_parser.add_argument( "--split_audio", type=str, help="Enable split audio", choices=["True", "False"], default="False", ) batch_infer_parser.add_argument( "--f0autotune", type=str, help="Enable autotune", choices=["True", "False"], default="False", ) batch_infer_parser.add_argument( "--clean_audio", type=str, help="Enable clean audio", choices=["True", "False"], default="False", ) batch_infer_parser.add_argument( "--clean_strength", type=str, help="Value for clean_strength", choices=[str(i / 10) for i in range(11)], default="0.7", ) batch_infer_parser.add_argument( "--export_format", type=str, help="Export format", choices=["WAV", "MP3", "FLAC", "OGG", "M4A"], default="WAV", ) batch_infer_parser.add_argument( "--embedder_model", type=str, help="Embedder model", choices=["contentvec", "hubert", "custom"], default="hubert", ) batch_infer_parser.add_argument( "--embedder_model_custom", type=str, help="Custom Embedder model", default=None, ) batch_infer_parser.add_argument( "--upscale_audio", type=str, help="Enable audio upscaling", choices=["True", "False"], default="False", ) # Parser for 'tts' mode tts_parser = subparsers.add_parser("tts", help="Run TTS") tts_parser.add_argument( "--tts_text", type=str, help="Text to be synthesized", ) tts_parser.add_argument( "--tts_voice", type=str, help="Voice to be used", choices=locales, ) tts_parser.add_argument( "--tts_rate", type=str, help="Increase or decrease TTS speed", choices=[str(i) for i in range(-100, 100)], default="0", ) tts_parser.add_argument( "--f0up_key", type=str, help="Value for f0up_key", choices=[str(i) for i in range(-24, 25)], default="0", ) tts_parser.add_argument( "--filter_radius", type=str, help="Value for filter_radius", choices=[str(i) for i in range(11)], default="3", ) tts_parser.add_argument( "--index_rate", type=str, help="Value for index_rate", choices=[str(i / 10) for i in range(11)], default="0.3", ) tts_parser.add_argument( "--rms_mix_rate", type=str, help="Value for rms_mix_rate", choices=[str(i / 10) for i in range(11)], default="1", ) tts_parser.add_argument( "--protect", type=str, help="Value for protect", choices=[str(i / 10) for i in range(6)], default="0.33", ) tts_parser.add_argument( "--hop_length", type=str, help="Value for hop_length", choices=[str(i) for i in range(1, 513)], default="128", ) tts_parser.add_argument( "--f0method", type=str, help="Value for f0method", choices=[ "pm", "harvest", "dio", "crepe", "crepe-tiny", "rmvpe", "fcpe", "hybrid[crepe+rmvpe]", "hybrid[crepe+fcpe]", "hybrid[rmvpe+fcpe]", "hybrid[crepe+rmvpe+fcpe]", ], default="rmvpe", ) tts_parser.add_argument("--output_tts_path", type=str, help="Output tts path") tts_parser.add_argument("--output_rvc_path", type=str, help="Output rvc path") tts_parser.add_argument("--pth_path", type=str, help="Path to the .pth file") tts_parser.add_argument( "--index_path", type=str, help="Path to the .index file", ) tts_parser.add_argument( "--split_audio", type=str, help="Enable split audio", choices=["True", "False"], default="False", ) tts_parser.add_argument( "--f0autotune", type=str, help="Enable autotune", choices=["True", "False"], default="False", ) tts_parser.add_argument( "--clean_audio", type=str, help="Enable clean audio", choices=["True", "False"], default="False", ) tts_parser.add_argument( "--clean_strength", type=str, help="Value for clean_strength", choices=[str(i / 10) for i in range(11)], default="0.7", ) tts_parser.add_argument( "--export_format", type=str, help="Export format", choices=["WAV", "MP3", "FLAC", "OGG", "M4A"], default="WAV", ) tts_parser.add_argument( "--embedder_model", type=str, help="Embedder model", choices=["contentvec", "hubert", "custom"], default="hubert", ) tts_parser.add_argument( "--embedder_model_custom", type=str, help="Custom Embedder model", default=None, ) tts_parser.add_argument( "--upscale_audio", type=str, help="Enable audio upscaling", choices=["True", "False"], default="False", ) # Parser for 'download' mode download_parser = subparsers.add_parser("download", help="Download models") download_parser.add_argument( "--model_link", type=str, help="Link of the model", ) # Parser for 'prerequisites' mode prerequisites_parser = subparsers.add_parser( "prerequisites", help="Install prerequisites" ) prerequisites_parser.add_argument( "--pretraineds_v1", type=str, choices=["True", "False"], default="True", help="Download pretrained models for v1", ) prerequisites_parser.add_argument( "--pretraineds_v2", type=str, choices=["True", "False"], default="True", help="Download pretrained models for v2", ) prerequisites_parser.add_argument( "--models", type=str, choices=["True", "False"], default="True", help="Donwload models", ) prerequisites_parser.add_argument( "--exe", type=str, choices=["True", "False"], default="True", help="Download executables", ) return parser.parse_args() def main(): if len(sys.argv) == 1: print("Please run the script with '-h' for more information.") sys.exit(1) args = parse_arguments() try: if args.mode == "infer": run_infer_script( str(args.f0up_key), str(args.filter_radius), str(args.index_rate), str(args.rms_mix_rate), str(args.protect), str(args.hop_length), str(args.f0method), str(args.input_path), str(args.output_path), str(args.pth_path), str(args.index_path), str(args.split_audio), str(args.f0autotune), str(args.clean_audio), str(args.clean_strength), str(args.export_format), str(args.embedder_model), str(args.embedder_model_custom), str(args.upscale_audio), ) elif args.mode == "batch_infer": run_batch_infer_script( str(args.f0up_key), str(args.filter_radius), str(args.index_rate), str(args.rms_mix_rate), str(args.protect), str(args.hop_length), str(args.f0method), str(args.input_folder), str(args.output_folder), str(args.pth_path), str(args.index_path), str(args.split_audio), str(args.f0autotune), str(args.clean_audio), str(args.clean_strength), str(args.export_format), str(args.embedder_model), str(args.embedder_model_custom), str(args.upscale_audio), ) elif args.mode == "tts": run_tts_script( str(args.tts_text), str(args.tts_voice), str(args.tts_rate), str(args.f0up_key), str(args.filter_radius), str(args.index_rate), str(args.rms_mix_rate), str(args.protect), str(args.hop_length), str(args.f0method), str(args.output_tts_path), str(args.output_rvc_path), str(args.pth_path), str(args.index_path), str(args.split_audio), str(args.f0autotune), str(args.clean_audio), str(args.clean_strength), str(args.export_format), str(args.embedder_model), str(args.embedder_model_custom), str(args.upscale_audio), ) elif args.mode == "download": run_download_script( str(args.model_link), ) elif args.mode == "prerequisites": run_prerequisites_script( str(args.pretraineds_v1), str(args.pretraineds_v2), str(args.models), str(args.exe), ) except Exception as error: print(f"Error: {error}") if __name__ == "__main__": main()