import gradio as gr import os import subprocess from subprocess import getoutput from huggingface_hub import snapshot_download hf_token = os.environ.get("HF_TOKEN") is_shared_ui = True if "fffiloni/train-dreambooth-lora-sdxl" in os.environ['SPACE_ID'] else False is_gpu_associated = torch.cuda.is_available() if is_gpu_associated: gpu_info = getoutput('nvidia-smi') if("A10G" in gpu_info): which_gpu = "A10G" elif("T4" in gpu_info): which_gpu = "T4" else: which_gpu = "CPU" def set_accelerate_default_config(): try: subprocess.run(["accelerate", "config", "default"], check=True) print("Accelerate default config set successfully!") except subprocess.CalledProcessError as e: print(f"An error occurred: {e}") def train_dreambooth_lora_sdxl(instance_data_dir, lora_trained_xl_folder, instance_prompt, max_train_steps, checkpoint_steps, remove_gpu): script_filename = "train_dreambooth_lora_sdxl.py" # Assuming it's in the same folder command = [ "accelerate", "launch", script_filename, # Use the local script "--pretrained_model_name_or_path=stabilityai/stable-diffusion-xl-base-1.0", "--pretrained_vae_model_name_or_path=madebyollin/sdxl-vae-fp16-fix", f"--instance_data_dir={instance_data_dir}", f"--output_dir={lora_trained_xl_folder}", "--mixed_precision=fp16", f"--instance_prompt={instance_prompt}", "--resolution=1024", "--train_batch_size=2", "--gradient_accumulation_steps=2", "--gradient_checkpointing", "--learning_rate=1e-4", "--lr_scheduler=constant", "--lr_warmup_steps=0", "--enable_xformers_memory_efficient_attention", "--mixed_precision=fp16", "--use_8bit_adam", f"--max_train_steps={max_train_steps}", f"--checkpointing_steps={checkpoint_steps}", "--seed=0", "--push_to_hub", f"--hub_token={hf_token}" ] try: subprocess.run(command, check=True) print("Training is finished!") if remove_gpu: swap_hardware(hf_token, "cpu-basic") except subprocess.CalledProcessError as e: print(f"An error occurred: {e}") title="There was an error on during your training" description=f''' Unfortunately there was an error during training your {model_name} model. Please check it out below. Feel free to report this issue to [SD-XL Dreambooth LoRa Training](https://huggingface.co/spaces/fffiloni/train-dreambooth-lora-sdxl): ``` {str(e)} ``` ''' swap_hardware(hf_token, "cpu-basic") write_to_community(title,description,hf_token) def main(dataset_id, lora_trained_xl_folder, instance_prompt, max_train_steps, checkpoint_steps, remove_gpu): if is_shared_ui: raise gr.Error("This Space only works in duplicated instances") if not is_gpu_associated: raise gr.Error("Please associate a T4 or A10G GPU for this Space") gr.Warning("## Training is ongoing ⌛... You can close this tab if you like or just wait. If you did not check the `Remove GPU After training`, you can come back here to try your model and upload it after training. Don't forget to remove the GPU attribution after you are done. ") dataset_repo = dataset_id # Automatically set local_dir based on the last part of dataset_repo repo_parts = dataset_repo.split("/") local_dir = f"./{repo_parts[-1]}" # Use the last part of the split # Check if the directory exists and create it if necessary if not os.path.exists(local_dir): os.makedirs(local_dir) gr.Info("Downloading dataset ...") snapshot_download( dataset_repo, local_dir=local_dir, repo_type="dataset", ignore_patterns=".gitattributes", token=hf_token ) set_accelerate_default_config() gr.Info("Training begins ...") instance_data_dir = repo_parts[-1] train_dreambooth_lora_sdxl(instance_data_dir, lora_trained_xl_folder, instance_prompt, max_train_steps, checkpoint_steps, remove_gpu) return f"Done, your trained model has been stored in your models library: your_user_name/{lora-trained-xl-folder}" with gr.Blocks() as demo: with gr.Column(): if is_shared_ui: top_description = gr.HTML(f'''

Attention - This Space doesn't work in this shared UI

For it to work, you can duplicate the Space and run it on your own profile using a (paid) private T4-small or A10G-small GPU for training. A T4 costs US$0.60/h, so it should cost < US$1 to train most models using default settings with it!  Duplicate Space

''') else: if(is_gpu_associated): top_description = gr.HTML(f'''

You have successfully associated a {which_gpu} GPU to the SD-XL Dreambooth LoRa Training Space 🎉

You can now train your model! You will be billed by the minute from when you activated the GPU until when it is turned it off.

''') else: top_description = gr.HTML(f'''

You have successfully duplicated the SD-XL Dreambooth LoRa Training Space 🎉

There's only one step left before you can train your model: attribute a T4-small or A10G-small GPU to it (via the Settings tab) and run the training below. You will be billed by the minute from when you activate the GPU until when it is turned it off.

''') with gr.Row(): dataset_id = gr.Textbox(label="Dataset ID", info="use one of your previously uploaded datasets on your HF profile", placeholder="diffusers/dog-example") instance_prompt = gr.Textbox(label="Concept prompt", info="concept prompt - use a unique, made up word to avoid collisions") with gr.Row(): model_output_folder = gr.Textbox(label="Output model folder name", placeholder="lora-trained-xl-folder") max_train_steps = gr.Number(label="Max Training Steps", value=500) checkpoint_steps = gr.Number(label="Checkpoints Steps", value=100) remove_gpu = gr.Checkbox(label="Remove GPU After Training", value=True) train_button = gr.Button("Train !") status = gr.Textbox(label="Training status") train_button.click( fn = main, inputs = [ dataset_id, model_output_folder, instance_prompt, max_train_steps, checkpoint_steps, remove_gpu ], outputs = [status] ) demo.queue().launch()