import streamlit as st import streamlit.components.v1 as components import pandas as pd import numpy as np from sentence_transformers import SentenceTransformer, util from datasets import load_dataset from huggingface_hub import hf_hub_download import pickle # Set Streamlit page configuration st.set_page_config(page_title="App", layout="wide") st.title("Semantic Search on HAL UNIV-COTEDAZUR SHS articles from 2013 to 2023") st.subheader("The pre-processed data are accesible and documented from this HF dataset ") with st.spinner('Loading datasets...'): dataset = load_dataset( "Geraldine/hal_univcotedazur_shs_articles_2013-2023", revision="main" ) # data hal_data = load_dataset("Geraldine/hal_univcotedazur_shs_articles_2013-2023", data_files="hal_data.csv") df = pd.DataFrame(hal_data["train"]) df = df.replace(np.nan, '') df = df.astype(str) # embeddings hf_hub_download(repo_id="Geraldine/hal_univcotedazur_shs_articles_2013-2023", filename="hal_embeddings.pkl", repo_type="dataset", cache_dir="data", local_dir="data") file = open("data/hal_embeddings.pkl",'rb') corpus_embeddings = pickle.load(file) model_id = "sentence-transformers/all-MiniLM-L6-v2" def llm_response(query): embedder = SentenceTransformer(model_id) question_embedding = embedder.encode(query, convert_to_tensor=True) hits = util.semantic_search(question_embedding, corpus_embeddings, top_k=5) article_data_list = [] data_list = [] for hit in hits[0]: hit_id = hit['corpus_id'] article_data = df.iloc[hit_id] #article_data_list.append(article_data["combined"]) article_data_list.append({"title": article_data["title_s"] + ". " + article_data["subTitle_s"], "date": article_data["producedDate_s"], "journal" : article_data["journalTitle_s"], "pub": article_data["journalPublisher_s"], "abstract": article_data["abstract_s"] }) return article_data_list with st.container(): if query := st.text_input( "Enter your question :"): st.markdown(f"### :green[{model_option} results]") with st.expander(":blue[click here to see the HAL search engine results]"): components.iframe(f"https://hal.univ-cotedazur.fr/search/index/?q={query}&rows=30&publicationDateY_i=2023+OR+2022+OR+2021+OR+2020+OR+2019+OR+2018+OR+2017+OR+2016+OR+2015+OR+2014+OR+2013&docType_s=ART", height=800, scrolling=True) with st.spinner('Calculating...'): response = llm_response(query) for x in response: st.success("**Title** : " + x["title"] + " \n " + "**Date** : " + x["date"] + " \n " + "**Journal** : " + x["journal"] + "(" + x["pub"] + ")" + " \n " + "**Abstract** : " + x["abstract"])