import os import numpy as np import torch import pytorch_lightning as pl import torch.nn as nn import clip from PIL import Image, ImageFile import gradio as gr # if you changed the MLP architecture during training, change it also here: class MLP(pl.LightningModule): def __init__(self, input_size, xcol='emb', ycol='avg_rating'): super().__init__() self.input_size = input_size self.xcol = xcol self.ycol = ycol self.layers = nn.Sequential( nn.Linear(self.input_size, 1024), #nn.ReLU(), nn.Dropout(0.2), nn.Linear(1024, 128), #nn.ReLU(), nn.Dropout(0.2), nn.Linear(128, 64), #nn.ReLU(), nn.Dropout(0.1), nn.Linear(64, 16), #nn.ReLU(), nn.Linear(16, 1) ) def forward(self, x): return self.layers(x) def training_step(self, batch, batch_idx): x = batch[self.xcol] y = batch[self.ycol].reshape(-1, 1) x_hat = self.layers(x) loss = F.mse_loss(x_hat, y) return loss def validation_step(self, batch, batch_idx): x = batch[self.xcol] y = batch[self.ycol].reshape(-1, 1) x_hat = self.layers(x) loss = F.mse_loss(x_hat, y) return loss def configure_optimizers(self): optimizer = torch.optim.Adam(self.parameters(), lr=1e-3) return optimizer def normalized(a, axis=-1, order=2): import numpy as np # pylint: disable=import-outside-toplevel l2 = np.atleast_1d(np.linalg.norm(a, order, axis)) l2[l2 == 0] = 1 return a / np.expand_dims(l2, axis) def load_models(): model = MLP(768) device = "cuda" if torch.cuda.is_available() else "cpu" s = torch.load("sac+logos+ava1-l14-linearMSE.pth", map_location=device) model.load_state_dict(s) model.to(device) model.eval() model2, preprocess = clip.load("ViT-L/14", device=device) model_dict = {} model_dict['classifier'] = model model_dict['clip_model'] = model2 model_dict['clip_preprocess'] = preprocess model_dict['device'] = device return model_dict def predict(image): image_input = model_dict['clip_preprocess'](image).unsqueeze(0).to(model_dict['device']) with torch.no_grad(): image_features = model_dict['clip_model'].encode_image(image_input) if model_dict['device'] == 'cuda': im_emb_arr = normalized(image_features.detach().cpu().numpy()) im_emb = torch.from_numpy(im_emb_arr).to(model_dict['device']).type(torch.cuda.FloatTensor) else: im_emb_arr = normalized(image_features.detach().numpy()) im_emb = torch.from_numpy(im_emb_arr).to(model_dict['device']).type(torch.FloatTensor) prediction = model_dict['classifier'](im_emb) score = prediction.item() return {'aesthetic score': score} if __name__ == '__main__': print('\tinit models') global model_dict model_dict = load_models() inputs = [gr.inputs.Image(type='pil', label='Image')] outputs = gr.outputs.JSON() title = 'image aesthetic predictor' examples = ['example1.jpg', 'example2.jpg', 'example3.jpg'] description = """ # Image Aesthetic Predictor Demo This model (Image Aesthetic Predictor) is trained by LAION Team. See [https://github.com/christophschuhmann/improved-aesthetic-predictor](https://github.com/christophschuhmann/improved-aesthetic-predictor) 1. This model is desgined by adding five MLP layers on top of (frozen) CLIP ViT-L/14 and only the MLP layers are fine-tuned with a lot of images by a regression loss term such as MSE and MAE. 2. Output is bounded from 0 to 10. The higher the better. """ article = "

LAION aesthetics blog post

" with gr.Blocks() as demo: gr.Markdown(description) with gr.Row(): with gr.Column(): image_input = gr.Image(type='pil', label='Input image') submit_button = gr.Button('Submit') json_output = gr.JSON(label='Output') submit_button.click(predict, inputs=image_input, outputs=json_output) gr.Examples(examples=examples, inputs=image_input) gr.HTML(article) demo.launch()