import numpy as np def _concat(arr_list, axis=0): """Avoids a copy if there is only a single element in a list. """ if len(arr_list) == 1: return arr_list[0] return np.concatenate(arr_list, axis) def convert_boxes_list_to_boxes_and_indices(boxes_list): """ Args: boxes_list (np.ndarray): list or tuple of ndarray with shape (N_i, 4+K) Returns: boxes (ndarray): shape (M, 4+K) where M is sum of N_i. indices (ndarray): shape (M, 1) where M is sum of N_i. References: `mmdet.core.bbox.bbox2roi` in mmdetection `convert_boxes_to_roi_format` in TorchVision `modeling.poolers.convert_boxes_to_pooler_format` in detectron2 """ assert isinstance(boxes_list, (list, tuple)) boxes = _concat(boxes_list, axis=0) indices_list = [np.full((len(b), 1), i, boxes.dtype) for i, b in enumerate(boxes_list)] indices = _concat(indices_list, axis=0) return boxes, indices def convert_boxes_and_indices_to_boxes_list(boxes, indices, num_indices): """ Args: boxes (np.ndarray): shape (N, 4+K) indices (np.ndarray): shape (N,) or (N, 1), maybe batch index in mini-batch or class label index. num_indices (int): number of index. Returns: list (ndarray): boxes list of each index References: `mmdet.core.bbox2result` in mmdetection `mmdet.core.bbox.roi2bbox` in mmdetection `convert_boxes_to_roi_format` in TorchVision `modeling.poolers.convert_boxes_to_pooler_format` in detectron2 """ boxes = np.asarray(boxes) indices = np.asarray(indices) assert boxes.ndim == 2, "boxes ndim must be 2, got {}".format(boxes.ndim) assert (indices.ndim == 1) or (indices.ndim == 2 and indices.shape[-1] == 1), \ "indices ndim must be 1 or 2 if last dimension size is 1, got shape {}".format(indices.shape) assert boxes.shape[0] == indices.shape[0], "the 1st dimension size of boxes and indices "\ "must be the same, got {} != {}".format(boxes.shape[0], indices.shape[0]) if boxes.shape[0] == 0: return [np.zeros((0, boxes.shape[1]), dtype=np.float32) for i in range(num_indices)] else: if indices.ndim == 2: indices = np.squeeze(indices, axis=-1) return [boxes[indices == i, :] for i in range(num_indices)]