import argparse def parse_args(): parser = argparse.ArgumentParser(description="encode the librilight dataset using encodec model") parser.add_argument("--dataset_size", type=str, default='xs', help='sizes of gigaspeech, xs, s, m, l, xl. we use xl for VoiceCraft training, xs is good for debugging') parser.add_argument('--download_to', type=str, default="/data/scratch/pyp/datasets/gigaspeech_debug", help="dir where you want the huggingface gigaspeech dataset to be downloaded to") parser.add_argument('--save_dir', type=str, default="/data/scratch/pyp/datasets/gigaspeech_phn_enc_manifest_debug", help="path to the manifest, phonemes, and encodec codes dirs") parser.add_argument('--encodec_model_path', type=str, default="/data/scratch/pyp/exp_pyp/audiocraft/encodec/xps/6f79c6a8/checkpoint.th") parser.add_argument('--n_workers', type=int, default=4, help="Number of parallel worker processes") parser.add_argument('--mega_batch_size', type=int, default=100, help="Number of samples in each mega batch for multiprocess dataloading") parser.add_argument('--batch_size', type=int, default=4, help="batch size for encodec encoding, decrease it if OOM. This is the sum of batch size *over each gpu*, so increase it if you are using more gpus") parser.add_argument('--model_sr', type=int, default=16000, help='encodec input audio sample rate') parser.add_argument('--downsample_rate', type=int, default=320, help='encodec downsample rate') parser.add_argument('--model_code_sr', type=int, default=50, help='encodec model code sample rate') parser.add_argument('--len_cap', type=float, default=35.0, help='will drop audios that are longer than this number') parser.add_argument('--max_len', type=int, default=30000, help='max length of audio in samples, if exceed, will cut a batch into half to process, decrease this number if OOM on your machine') return parser.parse_args() if __name__ == "__main__": import logging formatter = ( "%(asctime)s [%(levelname)s] %(filename)s:%(lineno)d || %(message)s" ) logging.basicConfig(format=formatter, level=logging.INFO) args = parse_args() import os import numpy as np import torch import tqdm import time from datasets import load_dataset, DownloadConfig from tokenizer import TextTokenizer, tokenize_text # get the path phn_save_root = os.path.join(args.save_dir, args.dataset_size, "phonemes") codes_save_root = os.path.join(args.save_dir, args.dataset_size, "encodec_16khz_4codebooks") vocab_fn = os.path.join(args.save_dir, args.dataset_size, "vocab.txt") os.makedirs(phn_save_root, exist_ok=True) os.makedirs(codes_save_root, exist_ok=True) def sort_by_audio_len(lens): inds = np.argsort(lens).tolist() logging.info(f"longest: {lens[inds[-1]]*args.model_code_sr} encodec codes, {lens[inds[-1]]:.2f} sec.") logging.info(f"shortest: {lens[inds[0]]*args.model_code_sr} encodec codes, {lens[inds[0]]:.2f} sec.") logging.info(f"median: {lens[inds[len(inds)//2]]*args.model_code_sr} encodec codes, {lens[inds[len(inds)//2]]:.2f} sec.") logging.info(f"95 percentile longest: {lens[inds[int(len(inds)*0.95)]]*args.model_code_sr} encodec codes, {lens[inds[int(len(inds)*0.95)]]:.2f} sec.") return inds[::-1] def write_array_to_txt_file(array, filename): with open(filename, 'w') as f: for a in array[:-1]: f.write(' '.join(map(str, a))+'\n') f.write(' '.join(map(str, array[-1]))) ### phonemization # load tokenizer # load the encodec model from audiocraft.solvers import CompressionSolver model = CompressionSolver.model_from_checkpoint(args.encodec_model_path) model = model.cuda() model = model.eval() text_tokenizer = TextTokenizer() # https://github.com/SpeechColab/GigaSpeech # there are only four different punctuations # need to check whether there are other < started strings punc2sym = {" ": ",", " ": ".", " ": "?", " ": "!"} # note the space in front of each punc name gar2sym = {"": "#%#", "": "##%", "": "%%#", "":"%#%"} # so that they are savely keep as the original sym when using tokenize_text punc2sym.update(gar2sym) word2sym = { "h æ ʃ h ɐ ʃ p ɚ s ɛ n t": "", "h æ ʃ p ɚ s ɛ n t h æ ʃ": "", "p ɚ s ɛ n t h ɐ ʃ p ɚ s ɛ n t": "", "p ɚ s ɛ n t p ɚ s ɛ n t h æ ʃ": ""} forbidden_words = set(['#%#', '##%', '%%#', '%#%']) dc = DownloadConfig(cache_dir=args.download_to) stime = time.time() logging.info("loading the dataset...") gs = load_dataset("speechcolab/gigaspeech", args.dataset_size, use_auth_token=True, cache_dir = args.download_to, download_config=dc) logging.info(f"time spend on loading the dataset: {time.time() - stime:.2f} seconds") splits = ['validation', 'test', 'train'] logging.info(f"gigaspeech dataset {args.dataset_size} info: {gs}") logging.info(f"phonemizing...") phn_vocab = set() all_lens = [] # you will see a ton of [WARNING] words_mismatch.py:88......, it's not a issue for split in tqdm.tqdm(splits): skip = 0 logging.info(f"now processing split {split}...") for item in tqdm.tqdm(gs[split]): save_fn = os.path.join(phn_save_root, item['segment_id']+".txt") text = item['text'] if sum(word in forbidden_words for word in text.split(" ")): logging.info(f"skip {item['segment_id']}, because it contains forbiden words. It's transcript: {text}") skip += 1 continue for k, v in punc2sym.items(): text = text.replace(k, v) phn = tokenize_text(text_tokenizer, text) phn_seq = " ".join(phn) for k, v in word2sym.items(): phn_seq = phn_seq.replace(k, v) phn_vocab.update(phn_seq.split(" ")) all_lens.append(len(phn_seq.split(" "))) with open(save_fn, "w") as f: f.write(phn_seq) logging.info(f"split {split} has {len(gs[split])} samples in total, skipped {skip} due to forbiden words") print(f"phn vocab size: {len(list(phn_vocab))}") print("phn sequence stats: ") print(f"longest: {max(all_lens)}") print(f"shortest: {min(all_lens)}") print(f"median: {np.quantile(all_lens, 0.5)}") print(f"95 percentile longest: {np.quantile(all_lens, 0.95)}") print("write vocabulary to ", vocab_fn) with open(vocab_fn, "w") as f: for i, phn in enumerate(list(phn_vocab)): if i < len(list(phn_vocab)) - 1: f.write(f"{str(i)} {phn}\n") else: f.write(f"{str(i)} {phn}") class mydataset(torch.utils.data.Dataset): def __init__(self, split): super().__init__() self.data = gs[split] def __len__(self): return len(self.data) def __getitem__(self, ind): try: segment_id, audio, sr, text, begin_time, end_time = self.data[ind]['segment_id'], torch.from_numpy(self.data[ind]['audio']['array']).float(), self.data[ind]['audio']['sampling_rate'], self.data[ind]['text'], self.data[ind]['begin_time'], self.data[ind]['end_time'] except: return None, None, None, None, None, None return segment_id, audio, sr, text, begin_time, end_time def collate(self, batch): res = {'segment_id': [], "audio": [], "sr": [], "text": [], "begin_time": [], "end_time": []} for item in batch: if item[0] != None: res['segment_id'].append(item[0]) res['audio'].append(item[1]) res['sr'].append(item[2]) res['text'].append(item[3]) res['begin_time'].append(item[4]) res['end_time'].append(item[5]) return res ## encodec codes extraction logging.info("encodec encoding...") train_dataset = mydataset('train') train_loader = torch.torch.utils.data.DataLoader(train_dataset, batch_size=args.mega_batch_size, shuffle=False, drop_last=False, num_workers=args.n_workers, collate_fn=train_dataset.collate) validation_dataset = mydataset('validation') validation_loader = torch.torch.utils.data.DataLoader(validation_dataset, batch_size=args.mega_batch_size, shuffle=False, drop_last=False, num_workers=args.n_workers, collate_fn=validation_dataset.collate) test_dataset = mydataset('test') test_loader = torch.torch.utils.data.DataLoader(test_dataset, batch_size=args.mega_batch_size, shuffle=False, drop_last=False, num_workers=args.n_workers, collate_fn=test_dataset.collate) splits = ['validation', 'test', 'train'] loaders = [validation_loader, test_loader, train_loader] # splits = ['validation'] # for debug # loaders = [validation_loader] for split, loader in zip(splits, loaders): skip = 0 logging.info(f"now processing split {split}...") mega_n_steps = int(np.ceil(len(gs[split]) / args.mega_batch_size)) logging.info(f"partition the split {split} into {mega_n_steps} parts, each has {args.mega_batch_size} samples") for m, mega_batch in enumerate(loader): logging.info(f"====================================") logging.info(f"====================================") logging.info(f"now processing mega step {m+1}/{mega_n_steps}") lengths = np.array(mega_batch['end_time']) - np.array(mega_batch['begin_time']) sorted_inds = sort_by_audio_len(lengths) for j in range(len(sorted_inds))[::-1]: if lengths[sorted_inds[j]] < 0.2 or lengths[sorted_inds[j]] > args.len_cap: # skip samples that are too short (shorter than 0.2s), or too big (bigger than 80s) skip += 1 del sorted_inds[j] n_steps = int(np.ceil(len(sorted_inds) / args.batch_size)) for n in tqdm.tqdm(range(n_steps), disable=True): inds_used = sorted_inds[n*args.batch_size:(n+1)*args.batch_size] audio_batch = [mega_batch['audio'][id] for id in inds_used] sr_batch = [mega_batch['sr'][id] for id in inds_used] segment_id_batch = [mega_batch['segment_id'][id] for id in inds_used] text_batch = [mega_batch['text'][id] for id in inds_used] padded_wav = torch.nn.utils.rnn.pad_sequence(audio_batch, batch_first=True).unsqueeze(1) # [B, T] -> [B, 1, T] all_lens = [lengths[id] for id in inds_used] with torch.no_grad(): if max(all_lens) > args.max_len and len(all_lens) > 1: # NOTE decrease args.max_len if OOM, or chunk it into more than 2 forward passes codes = [] inwav = padded_wav.cuda() codes.append(model.encode(inwav[:len(inwav)//2])[0].cpu()) codes.append(model.encode(inwav[len(inwav)//2:])[0].cpu()) codes = torch.cat(codes, dim=0) else: encoded_frames = model.encode(padded_wav.cuda()) # logging.info(f"encoded_frames: {encoded_frames[0].shape}") codes = encoded_frames[0].cpu() for i, length in enumerate(all_lens): save_fn = os.path.join(codes_save_root, segment_id_batch[i]+".txt") actual_len = round(length * args.model_code_sr) # 320 is downsample rate for this model cur_code = codes[i].tolist() if type(codes) == list else codes[i, :, :actual_len].tolist() write_array_to_txt_file(cur_code, save_fn)