File size: 1,256 Bytes
e88b277
 
bbb7c5d
 
a180961
46db6b6
7ac92d5
46db6b6
bbb7c5d
 
 
46db6b6
bbb7c5d
 
45af9e6
bbb7c5d
 
45af9e6
bbb7c5d
06d2ce8
bbb7c5d
7ac92d5
bbb7c5d
 
46db6b6
7ac92d5
bbb7c5d
46db6b6
bbb7c5d
ded3931
bbb7c5d
 
e88b277
bbb7c5d
 
 
e88b277
bbb7c5d
 
46db6b6
 
7ac92d5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from flask import Flask, request, jsonify
import torch
from transformers import AutoModel, AutoTokenizer
from fastsafetensors import safe_load

# Initialize the Flask app
myapp = Flask(__name__)

# Load the model and tokenizer using safe_load
model_path = "https://huggingface.co/prompthero/openjourney-v4/blob/main/safety_checker/model.safetensors"  # Replace with your .safetensors file path
model_data = safe_load(model_path)

# Specify the model name, adjust as necessary
model_name = "prompthero/openjourney-v4"  # Replace with your model name

# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name)

# Load the model weights from safeload
model = AutoModel.from_pretrained(model_name, state_dict=model_data).to("cpu")

@myapp.route('/')
def index():
    return "Welcome to the AI Model API!"

@myapp.route('/generate', methods=['POST'])
def generate_output():
    data = request.json
    prompt = data.get('prompt', 'Hello, world!')

    # Tokenize input prompt
    inputs = tokenizer(prompt, return_tensors="pt")

    # Generate output
    with torch.no_grad():
        outputs = model(**inputs)

    # Process and return the output
    return jsonify(outputs)

if __name__ == "__main__":
    myapp.run(host='0.0.0.0', port=5000)