File size: 11,127 Bytes
86f4dfa d9f8113 86f4dfa 6578daf d9f8113 3abff25 86f4dfa 4944958 3abff25 4944958 3abff25 86f4dfa d9f8113 86f4dfa d9f8113 86f4dfa 4944958 86f4dfa 4944958 d9f8113 3abff25 4944958 6578daf 4944958 6578daf 3abff25 6578daf 4944958 86f4dfa 3abff25 86f4dfa d9f8113 86f4dfa d9f8113 3abff25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
import pandas as pd
import numpy as np
import yfinance as yf
import streamlit as st
from datetime import datetime, timedelta
import pytz
# Function to fetch stock data
def fetch_stock_data(ticker, start_datetime, end_datetime):
stock_data = yf.download(ticker, start=start_datetime, end=end_datetime)
return stock_data
def fetch_stock_data(ticker, start_datetime, end_datetime):
# Fetch live data using yfinance
stock_data = yf.download(ticker, start=start_datetime, end=end_datetime)
# Convert DatetimeIndex to a column
df.reset_index(inplace=True)
return stock_data
# Function to detect head and shoulder patterns
def detect_head_shoulder(df, window=3):
roll_window = window
df['high_roll_max'] = df['High'].rolling(window=roll_window).max()
df['low_roll_min'] = df['Low'].rolling(window=roll_window).min()
mask_head_shoulder = (
(df['high_roll_max'] > df['High'].shift(1)) &
(df['high_roll_max'] > df['High'].shift(-1)) &
(df['High'] < df['High'].shift(1)) &
(df['High'] < df['High'].shift(-1))
)
mask_inv_head_shoulder = (
(df['low_roll_min'] < df['Low'].shift(1)) &
(df['low_roll_min'] < df['Low'].shift(-1)) &
(df['Low'] > df['Low'].shift(1)) &
(df['Low'] > df['Low'].shift(-1))
)
df['head_shoulder_pattern'] = np.nan
df.loc[mask_head_shoulder, 'head_shoulder_pattern'] = 'Head and Shoulder'
df.loc[mask_inv_head_shoulder, 'head_shoulder_pattern'] = 'Inverse Head and Shoulder'
return df
# Function to detect multiple tops and bottoms
def detect_multiple_tops_bottoms(df, window=3):
roll_window = window
df['high_roll_max'] = df['High'].rolling(window=roll_window).max()
df['low_roll_min'] = df['Low'].rolling(window=roll_window).min()
df['close_roll_max'] = df['Close'].rolling(window=roll_window).max()
df['close_roll_min'] = df['Close'].rolling(window=roll_window).min()
mask_top = (df['high_roll_max'] >= df['High'].shift(1)) & (df['close_roll_max'] < df['Close'].shift(1))
mask_bottom = (df['low_roll_min'] <= df['Low'].shift(1)) & (df['close_roll_min'] > df['Close'].shift(1))
df['multiple_top_bottom_pattern'] = np.nan
df.loc[mask_top, 'multiple_top_bottom_pattern'] = 'Multiple Top'
df.loc[mask_bottom, 'multiple_top_bottom_pattern'] = 'Multiple Bottom'
return df
# Function to calculate support and resistance levels
def calculate_support_resistance(df, window=3):
roll_window = window
std_dev = 2
df['high_roll_max'] = df['High'].rolling(window=roll_window).max()
df['low_roll_min'] = df['Low'].rolling(window=roll_window).min()
mean_high = df['High'].rolling(window=roll_window).mean()
std_high = df['High'].rolling(window=roll_window).std()
mean_low = df['Low'].rolling(window=roll_window).mean()
std_low = df['Low'].rolling(window=roll_window).std()
df['support'] = mean_low - std_dev * std_low
df['resistance'] = mean_high + std_dev * std_high
return df
# Function to detect triangle patterns
def detect_triangle_pattern(df, window=3):
roll_window = window
df['high_roll_max'] = df['High'].rolling(window=roll_window).max()
df['low_roll_min'] = df['Low'].rolling(window=roll_window).min()
mask_asc = (
(df['high_roll_max'] >= df['High'].shift(1)) &
(df['low_roll_min'] <= df['Low'].shift(1)) &
(df['Close'] > df['Close'].shift(1))
)
mask_desc = (
(df['high_roll_max'] <= df['High'].shift(1)) &
(df['low_roll_min'] >= df['Low'].shift(1)) &
(df['Close'] < df['Close'].shift(1))
)
df['triangle_pattern'] = np.nan
df.loc[mask_asc, 'triangle_pattern'] = 'Ascending Triangle'
df.loc[mask_desc, 'triangle_pattern'] = 'Descending Triangle'
return df
# Function to detect wedge patterns
def detect_wedge(df, window=3):
roll_window = window
df['high_roll_max'] = df['High'].rolling(window=roll_window).max()
df['low_roll_min'] = df['Low'].rolling(window=roll_window).min()
df['trend_high'] = df['High'].rolling(window=roll_window).apply(lambda x: 1 if (x[-1]-x[0]) > 0 else -1 if (x[-1]-x[0]) < 0 else 0)
df['trend_low'] = df['Low'].rolling(window=roll_window).apply(lambda x: 1 if (x[-1]-x[0]) > 0 else -1 if (x[-1]-x[0]) < 0 else 0)
mask_wedge_up = (
(df['high_roll_max'] >= df['High'].shift(1)) &
(df['low_roll_min'] <= df['Low'].shift(1)) &
(df['trend_high'] == 1) &
(df['trend_low'] == 1)
)
mask_wedge_down = (
(df['high_roll_max'] <= df['High'].shift(1)) &
(df['low_roll_min'] >= df['Low'].shift(1)) &
(df['trend_high'] == -1) &
(df['trend_low'] == -1)
)
df['wedge_pattern'] = np.nan
df.loc[mask_wedge_up, 'wedge_pattern'] = 'Wedge Up'
df.loc[mask_wedge_down, 'wedge_pattern'] = 'Wedge Down'
return df
# Function to detect channel patterns
def detect_channel(df, window=3):
roll_window = window
channel_range = 0.1
df['high_roll_max'] = df['High'].rolling(window=roll_window).max()
df['low_roll_min'] = df['Low'].rolling(window=roll_window).min()
df['trend_high'] = df['High'].rolling(window=roll_window).apply(lambda x: 1 if (x[-1]-x[0]) > 0 else -1 if (x[-1]-x[0]) < 0 else 0)
df['trend_low'] = df['Low'].rolling(window=roll_window).apply(lambda x: 1 if (x[-1]-x[0]) > 0 else -1 if (x[-1]-x[0]) <0 else 0)
mask_channel_up = (
(df['high_roll_max'] >= df['High'].shift(1)) &
(df['low_roll_min'] <= df['Low'].shift(1)) &
(df['high_roll_max'] - df['low_roll_min'] <= channel_range * (df['high_roll_max'] + df['low_roll_min'])/2) &
(df['trend_high'] == 1) &
(df['trend_low'] == 1)
)
mask_channel_down = (
(df['high_roll_max'] <= df['High'].shift(1)) &
(df['low_roll_min'] >= df['Low'].shift(1)) &
(df['high_roll_max'] - df['low_roll_min'] <= channel_range * (df['high_roll_max'] + df['low_roll_min'])/2) &
(df['trend_high'] == -1) &
(df['trend_low'] == -1)
)
df['channel_pattern'] = np.nan
df.loc[mask_channel_up, 'channel_pattern'] = 'Channel Up'
df.loc[mask_channel_down, 'channel_pattern'] = 'Channel Down'
return df
# Function to detect double top and bottom patterns
def detect_double_top_bottom(df, window=3, threshold=0.05):
roll_window = window
range_threshold = threshold
df['high_roll_max'] = df['High'].rolling(window=roll_window).max()
df['low_roll_min'] = df['Low'].rolling(window=roll_window).min()
mask_double_top = (
(df['high_roll_max'] >= df['High'].shift(1)) &
(df['high_roll_max'] >= df['High'].shift(-1)) &
(df['High'] < df['High'].shift(1)) &
(df['High'] < df['High'].shift(-1)) &
((df['High'].shift(1) - df['Low'].shift(1)) <= range_threshold * (df['High'].shift(1) + df['Low'].shift(1))/2) &
((df['High'].shift(-1) - df['Low'].shift(-1)) <= range_threshold * (df['High'].shift(-1) + df['Low'].shift(-1))/2)
)
mask_double_bottom = (
(df['low_roll_min'] <= df['Low'].shift(1)) &
(df['low_roll_min'] <= df['Low'].shift(-1)) &
(df['Low'] > df['Low'].shift(1)) &
(df['Low'] > df['Low'].shift(-1)) &
((df['High'].shift(1) - df['Low'].shift(1)) <= range_threshold * (df['High'].shift(1) + df['Low'].shift(1))/2) &
((df['High'].shift(-1) - df['Low'].shift(-1)) <= range_threshold * (df['High'].shift(-1) + df['Low'].shift(-1))/2)
)
df['double_pattern'] = np.nan
df.loc[mask_double_top, 'double_pattern'] = 'Double Top'
df.loc[mask_double_bottom, 'double_pattern'] = 'Double Bottom'
return df
# Function to detect trendlines
def detect_trendline(df, window=2):
roll_window = window
df['slope'] = np.nan
df['intercept'] = np.nan
for i in range(window, len(df)):
x = np.array(range(i-window, i))
y = df['Close'][i-window:i]
A = np.vstack([x, np.ones(len(x))]).T
m, c = np.linalg.lstsq(A, y, rcond=None)[0]
df.at[df.index[i], 'slope'] = m
df.at[df.index[i], 'intercept'] = c
mask_support = df['slope'] > 0
mask_resistance = df['slope'] < 0
df['support'] = np.nan
df['resistance'] = np.nan
df.loc[mask_support, 'support'] = df['Close'] * df['slope'] + df['intercept']
df.loc[mask_resistance, 'resistance'] = df['Close'] * df['slope'] + df['intercept']
return df
# Function to find pivots
def find_pivots(df):
high_diffs = df['High'].diff()
low_diffs = df['Low'].diff()
higher_high_mask = (high_diffs > 0) & (high_diffs.shift(-1) < 0)
lower_low_mask = (low_diffs < 0) & (low_diffs.shift(-1) > 0)
lower_high_mask = (high_diffs < 0) & (high_diffs.shift(-1) > 0)
higher_low_mask = (low_diffs > 0) & (low_diffs.shift(-1) < 0)
df['signal'] = ''
df.loc[higher_high_mask, 'signal'] = 'HH'
df.loc[lower_low_mask, 'signal'] = 'LL'
df.loc[lower_high_mask, 'signal'] = 'LH'
df.loc[higher_low_mask, 'signal'] = 'HL'
return df
# Streamlit App
def main():
st.title('Live Stock Pattern Detection App')
ticker = st.text_input('Enter Stock Ticker:', 'AAPL')
# Placeholder for start and end date
start_date_placeholder = st.empty()
end_date_placeholder = st.empty()
start_date = start_date_placeholder.date_input('Start Date', pd.to_datetime('2022-01-01'))
end_date = end_date_placeholder.date_input('End Date', pd.to_datetime('2022-02-01'))
st.info("Select Preferred Timezone:")
preferred_timezone = st.selectbox('Timezone', list(pytz.all_timezones))
# Time selection components
start_hour, start_minute, start_second = st.slider('Select Start Time', 0, 23, 0), st.slider('', 0, 59, 0), st.slider('', 0, 59, 0)
end_hour, end_minute, end_second = st.slider('Select End Time', 0, 23, 23), st.slider('', 0, 59, 59), st.slider('', 0, 59, 59)
start_datetime = datetime(start_date.year, start_date.month, start_date.day, start_hour, start_minute, start_second)
end_datetime = datetime(end_date.year, end_date.month, end_date.day, end_hour, end_minute, end_second)
start_datetime = pytz.timezone(preferred_timezone).localize(start_datetime)
end_datetime = pytz.timezone(preferred_timezone).localize(end_datetime)
start_date_placeholder.info(f"Start Date (UTC): {start_datetime.strftime('%Y-%m-%d %H:%M:%S %Z')}")
end_date_placeholder.info(f"End Date (UTC): {end_datetime.strftime('%Y-%m-%d %H:%M:%S %Z')}")
if st.button('Detect Patterns'):
stock_data = fetch_stock_data(ticker, start_datetime, end_datetime)
stock_data = detect_head_shoulder(stock_data)
stock_data = detect_multiple_tops_bottoms(stock_data)
stock_data = calculate_support_resistance(stock_data)
stock_data = detect_triangle_pattern(stock_data)
stock_data = detect_wedge(stock_data)
stock_data = detect_channel(stock_data)
stock_data = detect_double_top_bottom(stock_data)
stock_data = detect_trendline(stock_data)
stock_data = find_pivots(stock_data)
st.write(stock_data)
if __name__ == "__main__":
main()
|