import json import numpy as np import gradio as gr import pickle from sklearn.linear_model import LinearRegression # Load the model with open('HYD_Rent_Predictor.pkl', 'rb') as model_file: best_model = pickle.load(model_file) if isinstance(best_model, LinearRegression): best_model.check_input = False # Load the columns with open('columns.json', 'r') as f: data_columns = json.load(f)['data_columns'] def predict_price(locality, balconies, bathroom, furnishingDesc, parking, property_size, type_bhk, floor): loc_index = np.where(np.array(data_columns) == locality.lower())[0][0] x = np.zeros(len(data_columns)) x[0] = balconies x[1] = bathroom x[2] = furnishingDesc x[3] = parking x[4] = property_size x[5] = type_bhk x[6] = floor if loc_index >= 0: x[loc_index] = 1 return best_model.predict([x])[0] # Gradio interface def interface(locality, balconies, bathroom, furnishingDesc, parking, property_size, type_bhk, floor): result = predict_price(locality, balconies, bathroom, furnishingDesc, parking, property_size, type_bhk, floor) return f"Predicted Rent: {result:.2f} INR" furnishing_options = [0.5, 0, 1] # Replace with actual options parking_options = [0, 1, 2, 3] # Replace with actual options type_bhk_options = [0.5, 1, 2, 3, 4, 5] # Replace with actual options inputs = [ gr.Textbox(label="Locality"), # gr.Slider(0, 7, default=1, label="Balconies", interactive=True), gr.Slider(minimum=0, maximum=7, value=1, step=1, label="Balconies"), # gr.Slider(1, 5, step=1, default=1, label="Bathrooms"), gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Bathrooms"), gr.Dropdown(furnishing_options, label="Furnishing Description"), gr.Dropdown(parking_options, label="Parking"), # gr.Number(default=1000, label="Property Size (in sqft)"), # gr.Textbox(label="Property Size (in sqft)"), gr.Slider(minimum=100, maximum=13000, value=1000, step=150, label="Property Size (in sqft)"), gr.Dropdown(type_bhk_options, label="Type BHK"), # gr.Number(default=1, label="Floor"), gr.Slider(minimum=1, maximum=10, value=2, step=1, label="Floor"), # gr.Textbox(label="Floor"), ] outputs = gr.Textbox() # Create Gradio interface gr.Interface(fn=interface, inputs=inputs, outputs=outputs, title="Hyderabad House Rent Prediction").launch()