import sys import time import warnings from pathlib import Path # 配置hugface环境 from huggingface_hub import hf_hub_download import gradio as gr import os import glob import json # os.environ['CUDA_LAUNCH_BLOCKING'] = '1' # torch.set_float32_matmul_precision("high") def instruct_generate( img_path: str = " ", prompt: str = "What food do lamas eat?", input: str = "", max_new_tokens: int = 100, top_k: int = 200, temperature: float = 0.8, ) -> None: """Generates a response based on a given instruction and an optional input. This script will only work with checkpoints from the instruction-tuned LLaMA-Adapter model. See `finetune_adapter.py`. Args: prompt: The prompt/instruction (Alpaca style). adapter_path: Path to the checkpoint with trained adapter weights, which are the output of `finetune_adapter.py`. input: Optional input (Alpaca style). pretrained_path: The path to the checkpoint with pretrained LLaMA weights. tokenizer_path: The tokenizer path to load. quantize: Whether to quantize the model and using which method: ``"llm.int8"``: LLM.int8() mode, ``"gptq.int4"``: GPTQ 4-bit mode. max_new_tokens: The number of generation steps to take. top_k: The number of top most probable tokens to consider in the sampling process. temperature: A value controlling the randomness of the sampling process. Higher values result in more random """ output = [prompt, input, max_new_tokens, top_k, temperature] print(output) return output # 配置具体参数 example_path = "example.json" # 1024如果不够, 调整为512 max_seq_len = 1024 max_batch_size = 1 with open(example_path, 'r') as f: content = f.read() example_dict = json.loads(content) def create_instruct_demo(): with gr.Blocks() as instruct_demo: with gr.Row(): with gr.Column(): scene_img = gr.Image(label='Scene', type='filepath') object_list = gr.Textbox( lines=2, label="Input") instruction = gr.Textbox( lines=2, label="Instruction") max_len = gr.Slider(minimum=1, maximum=512, value=128, label="Max length") with gr.Accordion(label='Advanced options', open=False): temp = gr.Slider(minimum=0, maximum=1, value=0.8, label="Temperature") top_k = gr.Slider(minimum=100, maximum=300, value=200, label="Top k") run_botton = gr.Button("Run") with gr.Column(): outputs = gr.Textbox(lines=10, label="Output") inputs = [instruction, object_list, max_len, top_k, temp] # 接下来设定具体的example格式 examples_img_list = glob.glob("caption_demo/*.png") examples = [] for example_img_one in examples_img_list: scene_name = os.path.basename(example_img_one).split(".")[0] example_object_list = example_dict[scene_name]["input"] example_instruction = example_dict[scene_name]["instruction"] example_one = [example_img_one, example_object_list, example_instruction, 512, 0.8, 200] examples.append(example_one) gr.Examples( examples=examples, inputs=inputs, outputs=outputs, fn=instruct_generate, cache_examples=os.getenv('SYSTEM') == 'spaces' ) run_botton.click(fn=instruct_generate, inputs=inputs, outputs=outputs) return instruct_demo # Please refer to our [arXiv paper](https://arxiv.org/abs/2303.16199) and [github](https://github.com/ZrrSkywalker/LLaMA-Adapter) for more details. description = """ # TaPA The official demo for **Embodied Task Planning with Large Language Models**. """ with gr.Blocks(css='style.css') as demo: gr.Markdown(description) with gr.TabItem("Instruction-Following"): create_instruct_demo() demo.queue(api_open=True, concurrency_count=1).launch()