import functools import torch import torch.nn as nn from models.transformer import RETURNX, Transformer from models.base_blocks import Conv2d, LayerNorm2d, FirstBlock2d, DownBlock2d, UpBlock2d, \ FFCADAINResBlocks, Jump, FinalBlock2d class Visual_Encoder(nn.Module): def __init__(self, image_nc, ngf, img_f, layers, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False): super(Visual_Encoder, self).__init__() self.layers = layers self.first_inp = FirstBlock2d(image_nc, ngf, norm_layer, nonlinearity, use_spect) self.first_ref = FirstBlock2d(image_nc, ngf, norm_layer, nonlinearity, use_spect) for i in range(layers): in_channels = min(ngf*(2**i), img_f) out_channels = min(ngf*(2**(i+1)), img_f) model_ref = DownBlock2d(in_channels, out_channels, norm_layer, nonlinearity, use_spect) model_inp = DownBlock2d(in_channels, out_channels, norm_layer, nonlinearity, use_spect) if i < 2: ca_layer = RETURNX() else: ca_layer = Transformer(2**(i+1) * ngf,2,4,ngf,ngf*4) setattr(self, 'ca' + str(i), ca_layer) setattr(self, 'ref_down' + str(i), model_ref) setattr(self, 'inp_down' + str(i), model_inp) self.output_nc = out_channels * 2 def forward(self, maskGT, ref): x_maskGT, x_ref = self.first_inp(maskGT), self.first_ref(ref) out=[x_maskGT] for i in range(self.layers): model_ref = getattr(self, 'ref_down'+str(i)) model_inp = getattr(self, 'inp_down'+str(i)) ca_layer = getattr(self, 'ca'+str(i)) x_maskGT, x_ref = model_inp(x_maskGT), model_ref(x_ref) x_maskGT = ca_layer(x_maskGT, x_ref) if i < self.layers - 1: out.append(x_maskGT) else: out.append(torch.cat([x_maskGT, x_ref], dim=1)) # concat ref features ! return out class Decoder(nn.Module): def __init__(self, image_nc, feature_nc, ngf, img_f, layers, num_block, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False): super(Decoder, self).__init__() self.layers = layers for i in range(layers)[::-1]: if i == layers-1: in_channels = ngf*(2**(i+1)) * 2 else: in_channels = min(ngf*(2**(i+1)), img_f) out_channels = min(ngf*(2**i), img_f) up = UpBlock2d(in_channels, out_channels, norm_layer, nonlinearity, use_spect) res = FFCADAINResBlocks(num_block, in_channels, feature_nc, norm_layer, nonlinearity, use_spect) jump = Jump(out_channels, norm_layer, nonlinearity, use_spect) setattr(self, 'up' + str(i), up) setattr(self, 'res' + str(i), res) setattr(self, 'jump' + str(i), jump) self.final = FinalBlock2d(out_channels, image_nc, use_spect, 'sigmoid') self.output_nc = out_channels def forward(self, x, z): out = x.pop() for i in range(self.layers)[::-1]: res_model = getattr(self, 'res' + str(i)) up_model = getattr(self, 'up' + str(i)) jump_model = getattr(self, 'jump' + str(i)) out = res_model(out, z) out = up_model(out) out = jump_model(x.pop()) + out out_image = self.final(out) return out_image class LNet(nn.Module): def __init__( self, image_nc=3, descriptor_nc=512, layer=3, base_nc=64, max_nc=512, num_res_blocks=9, use_spect=True, encoder=Visual_Encoder, decoder=Decoder ): super(LNet, self).__init__() nonlinearity = nn.LeakyReLU(0.1) norm_layer = functools.partial(LayerNorm2d, affine=True) kwargs = {'norm_layer':norm_layer, 'nonlinearity':nonlinearity, 'use_spect':use_spect} self.descriptor_nc = descriptor_nc self.encoder = encoder(image_nc, base_nc, max_nc, layer, **kwargs) self.decoder = decoder(image_nc, self.descriptor_nc, base_nc, max_nc, layer, num_res_blocks, **kwargs) self.audio_encoder = nn.Sequential( Conv2d(1, 32, kernel_size=3, stride=1, padding=1), Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(32, 64, kernel_size=3, stride=(3, 1), padding=1), Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(64, 128, kernel_size=3, stride=3, padding=1), Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(128, 256, kernel_size=3, stride=(3, 2), padding=1), Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(256, 512, kernel_size=3, stride=1, padding=0), Conv2d(512, descriptor_nc, kernel_size=1, stride=1, padding=0), ) def forward(self, audio_sequences, face_sequences): B = audio_sequences.size(0) input_dim_size = len(face_sequences.size()) if input_dim_size > 4: audio_sequences = torch.cat([audio_sequences[:, i] for i in range(audio_sequences.size(1))], dim=0) face_sequences = torch.cat([face_sequences[:, :, i] for i in range(face_sequences.size(2))], dim=0) cropped, ref = torch.split(face_sequences, 3, dim=1) vis_feat = self.encoder(cropped, ref) audio_feat = self.audio_encoder(audio_sequences) _outputs = self.decoder(vis_feat, audio_feat) if input_dim_size > 4: _outputs = torch.split(_outputs, B, dim=0) outputs = torch.stack(_outputs, dim=2) else: outputs = _outputs return outputs