# Fast Fourier Convolution NeurIPS 2020 # original implementation https://github.com/pkumivision/FFC/blob/main/model_zoo/ffc.py # paper https://proceedings.neurips.cc/paper/2020/file/2fd5d41ec6cfab47e32164d5624269b1-Paper.pdf import torch import torch.nn as nn import torch.nn.functional as F # from models.modules.squeeze_excitation import SELayer import torch.fft class SELayer(nn.Module): def __init__(self, channel, reduction=16): super(SELayer, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Sequential( nn.Linear(channel, channel // reduction, bias=False), nn.ReLU(inplace=True), nn.Linear(channel // reduction, channel, bias=False), nn.Sigmoid() ) def forward(self, x): b, c, _, _ = x.size() y = self.avg_pool(x).view(b, c) y = self.fc(y).view(b, c, 1, 1) res = x * y.expand_as(x) return res class FFCSE_block(nn.Module): def __init__(self, channels, ratio_g): super(FFCSE_block, self).__init__() in_cg = int(channels * ratio_g) in_cl = channels - in_cg r = 16 self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.conv1 = nn.Conv2d(channels, channels // r, kernel_size=1, bias=True) self.relu1 = nn.ReLU(inplace=True) self.conv_a2l = None if in_cl == 0 else nn.Conv2d( channels // r, in_cl, kernel_size=1, bias=True) self.conv_a2g = None if in_cg == 0 else nn.Conv2d( channels // r, in_cg, kernel_size=1, bias=True) self.sigmoid = nn.Sigmoid() def forward(self, x): x = x if type(x) is tuple else (x, 0) id_l, id_g = x x = id_l if type(id_g) is int else torch.cat([id_l, id_g], dim=1) x = self.avgpool(x) x = self.relu1(self.conv1(x)) x_l = 0 if self.conv_a2l is None else id_l * \ self.sigmoid(self.conv_a2l(x)) x_g = 0 if self.conv_a2g is None else id_g * \ self.sigmoid(self.conv_a2g(x)) return x_l, x_g class FourierUnit(nn.Module): def __init__(self, in_channels, out_channels, groups=1, spatial_scale_factor=None, spatial_scale_mode='bilinear', spectral_pos_encoding=False, use_se=False, se_kwargs=None, ffc3d=False, fft_norm='ortho'): # bn_layer not used super(FourierUnit, self).__init__() self.groups = groups self.conv_layer = torch.nn.Conv2d(in_channels=in_channels * 2 + (2 if spectral_pos_encoding else 0), out_channels=out_channels * 2, kernel_size=1, stride=1, padding=0, groups=self.groups, bias=False) self.bn = torch.nn.BatchNorm2d(out_channels * 2) self.relu = torch.nn.ReLU(inplace=True) # squeeze and excitation block self.use_se = use_se if use_se: if se_kwargs is None: se_kwargs = {} self.se = SELayer(self.conv_layer.in_channels, **se_kwargs) self.spatial_scale_factor = spatial_scale_factor self.spatial_scale_mode = spatial_scale_mode self.spectral_pos_encoding = spectral_pos_encoding self.ffc3d = ffc3d self.fft_norm = fft_norm def forward(self, x): batch = x.shape[0] if self.spatial_scale_factor is not None: orig_size = x.shape[-2:] x = F.interpolate(x, scale_factor=self.spatial_scale_factor, mode=self.spatial_scale_mode, align_corners=False) r_size = x.size() # (batch, c, h, w/2+1, 2) fft_dim = (-3, -2, -1) if self.ffc3d else (-2, -1) ffted = torch.fft.rfftn(x, dim=fft_dim, norm=self.fft_norm) ffted = torch.stack((ffted.real, ffted.imag), dim=-1) ffted = ffted.permute(0, 1, 4, 2, 3).contiguous() # (batch, c, 2, h, w/2+1) ffted = ffted.view((batch, -1,) + ffted.size()[3:]) if self.spectral_pos_encoding: height, width = ffted.shape[-2:] coords_vert = torch.linspace(0, 1, height)[None, None, :, None].expand(batch, 1, height, width).to(ffted) coords_hor = torch.linspace(0, 1, width)[None, None, None, :].expand(batch, 1, height, width).to(ffted) ffted = torch.cat((coords_vert, coords_hor, ffted), dim=1) if self.use_se: ffted = self.se(ffted) ffted = self.conv_layer(ffted) # (batch, c*2, h, w/2+1) ffted = self.relu(self.bn(ffted)) ffted = ffted.view((batch, -1, 2,) + ffted.size()[2:]).permute( 0, 1, 3, 4, 2).contiguous() # (batch,c, t, h, w/2+1, 2) ffted = torch.complex(ffted[..., 0], ffted[..., 1]) ifft_shape_slice = x.shape[-3:] if self.ffc3d else x.shape[-2:] output = torch.fft.irfftn(ffted, s=ifft_shape_slice, dim=fft_dim, norm=self.fft_norm) if self.spatial_scale_factor is not None: output = F.interpolate(output, size=orig_size, mode=self.spatial_scale_mode, align_corners=False) return output class SpectralTransform(nn.Module): def __init__(self, in_channels, out_channels, stride=1, groups=1, enable_lfu=True, **fu_kwargs): # bn_layer not used super(SpectralTransform, self).__init__() self.enable_lfu = enable_lfu if stride == 2: self.downsample = nn.AvgPool2d(kernel_size=(2, 2), stride=2) else: self.downsample = nn.Identity() self.stride = stride self.conv1 = nn.Sequential( nn.Conv2d(in_channels, out_channels // 2, kernel_size=1, groups=groups, bias=False), nn.BatchNorm2d(out_channels // 2), nn.ReLU(inplace=True) ) self.fu = FourierUnit( out_channels // 2, out_channels // 2, groups, **fu_kwargs) if self.enable_lfu: self.lfu = FourierUnit( out_channels // 2, out_channels // 2, groups) self.conv2 = torch.nn.Conv2d( out_channels // 2, out_channels, kernel_size=1, groups=groups, bias=False) def forward(self, x): x = self.downsample(x) x = self.conv1(x) output = self.fu(x) if self.enable_lfu: n, c, h, w = x.shape split_no = 2 split_s = h // split_no xs = torch.cat(torch.split( x[:, :c // 4], split_s, dim=-2), dim=1).contiguous() xs = torch.cat(torch.split(xs, split_s, dim=-1), dim=1).contiguous() xs = self.lfu(xs) xs = xs.repeat(1, 1, split_no, split_no).contiguous() else: xs = 0 output = self.conv2(x + output + xs) return output class FFC(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, ratio_gin, ratio_gout, stride=1, padding=0, dilation=1, groups=1, bias=False, enable_lfu=True, padding_type='reflect', gated=False, **spectral_kwargs): super(FFC, self).__init__() assert stride == 1 or stride == 2, "Stride should be 1 or 2." self.stride = stride in_cg = int(in_channels * ratio_gin) in_cl = in_channels - in_cg out_cg = int(out_channels * ratio_gout) out_cl = out_channels - out_cg self.ratio_gin = ratio_gin self.ratio_gout = ratio_gout self.global_in_num = in_cg module = nn.Identity if in_cl == 0 or out_cl == 0 else nn.Conv2d self.convl2l = module(in_cl, out_cl, kernel_size, stride, padding, dilation, groups, bias, padding_mode=padding_type) module = nn.Identity if in_cl == 0 or out_cg == 0 else nn.Conv2d self.convl2g = module(in_cl, out_cg, kernel_size, stride, padding, dilation, groups, bias, padding_mode=padding_type) module = nn.Identity if in_cg == 0 or out_cl == 0 else nn.Conv2d self.convg2l = module(in_cg, out_cl, kernel_size, stride, padding, dilation, groups, bias, padding_mode=padding_type) module = nn.Identity if in_cg == 0 or out_cg == 0 else SpectralTransform self.convg2g = module( in_cg, out_cg, stride, 1 if groups == 1 else groups // 2, enable_lfu, **spectral_kwargs) self.gated = gated module = nn.Identity if in_cg == 0 or out_cl == 0 or not self.gated else nn.Conv2d self.gate = module(in_channels, 2, 1) def forward(self, x): x_l, x_g = x if type(x) is tuple else (x, 0) out_xl, out_xg = 0, 0 if self.gated: total_input_parts = [x_l] if torch.is_tensor(x_g): total_input_parts.append(x_g) total_input = torch.cat(total_input_parts, dim=1) gates = torch.sigmoid(self.gate(total_input)) g2l_gate, l2g_gate = gates.chunk(2, dim=1) else: g2l_gate, l2g_gate = 1, 1 if self.ratio_gout != 1: out_xl = self.convl2l(x_l) + self.convg2l(x_g) * g2l_gate if self.ratio_gout != 0: out_xg = self.convl2g(x_l) * l2g_gate + self.convg2g(x_g) return out_xl, out_xg