import gradio as gr from langchain_groq import ChatGroq from langchain_community.graphs.networkx_graph import NetworkxEntityGraph from langchain.chains import GraphQAChain from langchain_community.document_loaders import TextLoader from langchain.text_splitter import CharacterTextSplitter from langchain_community.vectorstores import Pinecone from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.llms import HuggingFaceHub from langchain.prompts import PromptTemplate from langchain_core.documents import Document from neo4j import GraphDatabase import networkx as nx import pinecone import os from datetime import datetime import gspread from oauth2client.service_account import ServiceAccountCredentials from typing import Optional, List, Dict, Any from pydantic import BaseModel, Field import time import tracemalloc # Custom Configuration for Pydantic class Config: arbitrary_types_allowed = True # Define base models for type validation class CustomDocument(BaseModel): page_content: str metadata: Dict[str, Any] = Field(default_factory=dict) class Config(Config): pass os.system("pip install sentence-transformers") os.system("pip install gspread oauth2client") os.system("pip install -U langchain-huggingface langchain-community") # Google Sheets Setup scope = ["https://spreadsheets.google.com/feeds", "https://www.googleapis.com/auth/drive"] creds = ServiceAccountCredentials.from_json_keyfile_name(r"./gen-lang-client-0300122402-f2f67b3e8c27.json", scope) client = gspread.authorize(creds) spreadsheet_id = "10953i4ZOhvpNAyyrFdo-4TvVwfVWppt0H2xXM7yYQF4" sheet = client.open_by_key(spreadsheet_id).sheet1 def store_feedback_in_sheet(feedback, question, rag_response, graphrag_response): timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") row = [timestamp, question, rag_response, graphrag_response, feedback] sheet.append_row(row) def load_data(): data = sheet.get_all_records() return data[-10:], len(data) def add_review(question, rag_response, graphrag_response, feedback): store_feedback_in_sheet(feedback, question, rag_response, graphrag_response) return load_data() # RAG Setup text_path = r"./text_chunks.txt" loader = TextLoader(text_path, encoding='utf-8') documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=3000, chunk_overlap=4) docs = text_splitter.split_documents(documents) embeddings = HuggingFaceEmbeddings() # Hugging Face Setup repo_id = "meta-llama/Meta-Llama-3-8B" llm = HuggingFaceHub( repo_id=repo_id, model_kwargs={"temperature": 0.8, "top_k": 50}, huggingfacehub_api_token=os.getenv('HUGGINGFACEHUB_API_TOKEN') ) # Pinecone Setup pinecone.init( api_key=os.getenv('PINECONE_API_KEY', '6396a319-9bc0-49b2-97ba-400e96eff377'), environment='gcp-starter' ) index_name = "langchain-demo" if index_name not in pinecone.list_indexes(): pinecone.create_index(name=index_name, metric="cosine", dimension=768) docsearch = Pinecone.from_documents(docs, embeddings, index_name=index_name) else: docsearch = Pinecone.from_existing_index(index_name, embeddings) # Setup LLMs rag_llm = ChatGroq( model="Llama3-8b-8192", temperature=0, groq_api_key='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' ) template = """ You are a Thai rice assistant. These humans will ask you questions about Thai rice. Answer the question only in Thai language. Use the following piece of context to answer the question. If you don't know the answer, just say you don't know. Keep the answer within 2 sentences and concise. Context: {context} Question: {question} Answer: """ prompt = PromptTemplate(template=template, input_variables=["context", "question"]) # Modified RAG chain setup def get_context(question: str) -> str: docs = docsearch.similarity_search(question) return " ".join([doc.page_content for doc in docs]) def get_rag_response(question: str) -> str: context = get_context(question) response = rag_llm.predict(prompt.format(context=context, question=question)) return response # Graph RAG Setup graphrag_llm = ChatGroq( model="Llama3-8b-8192", temperature=0, groq_api_key='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' ) # Neo4j Setup uri = "neo4j+s://86a1bbb8.databases.neo4j.io" user = "neo4j" password = "zURGb3tO9VFtKxPEw98WrQnphvJQbBDofDM9uG3O8O8" driver = GraphDatabase.driver(uri, auth=(user, password)) def fetch_nodes(tx): query = "MATCH (n) RETURN id(n) AS id, labels(n) AS labels" result = tx.run(query) return result.data() def fetch_relationships(tx): query = "MATCH (n)-[r]->(m) RETURN id(n) AS source, id(m) AS target, type(r) AS relation" result = tx.run(query) return result.data() def populate_networkx_graph(): G = nx.Graph() with driver.session() as session: nodes = session.execute_read(fetch_nodes) relationships = session.execute_read(fetch_relationships) for node in nodes: G.add_node(node['id'], labels=node['labels']) for relationship in relationships: G.add_edge( relationship['source'], relationship['target'], relation=relationship['relation'] ) return G networkx_graph = populate_networkx_graph() graph = NetworkxEntityGraph() graph._graph = networkx_graph graphrag_chain = GraphQAChain.from_llm( llm=graphrag_llm, graph=graph, verbose=True ) # Define functions to measure memory and time def measure_memory_and_time(func): def wrapper(*args, **kwargs): tracemalloc.start() # Start memory tracking start_time = time.time() # Start time tracking result = func(*args, **kwargs) current, peak = tracemalloc.get_traced_memory() # Get memory usage tracemalloc.stop() end_time = time.time() # End time tracking elapsed_time = end_time - start_time # Calculate elapsed time return result, elapsed_time, peak / 1024 # Convert memory to KB return wrapper # Modified functions to use memory and time measurement @measure_memory_and_time def get_rag_response(question: str) -> str: context = get_context(question) response = rag_llm.predict(prompt.format(context=context, question=question)) return response @measure_memory_and_time def get_graphrag_response(question: str) -> str: system_prompt = "You are a Thai rice assistant that gives concise and direct answers. Do not explain the process, just provide the answer, provide the answer only in Thai." formatted_question = f"System Prompt: {system_prompt}\n\nQuestion: {question}" response = graphrag_chain.run(formatted_question) return response # Modify compare_models to collect and display metrics def compare_models(question: str) -> dict: rag_response, rag_time, rag_memory = get_rag_response(question) graphrag_response, graphrag_time, graphrag_memory = get_graphrag_response(question) # Combine responses with metrics results = { "RAG Response": rag_response, "RAG Time (s)": round(rag_time, 2), "RAG Memory (KB)": round(rag_memory, 2), "GraphRAG Response": graphrag_response, "GraphRAG Time (s)": round(graphrag_time, 2), "GraphRAG Memory (KB)": round(graphrag_memory, 2), } return results # Gradio Interface with gr.Blocks() as demo: with gr.Row(): with gr.Column(): question_input = gr.Textbox(label="ถามคำถามเกี่ยวกับข้าว:", placeholder="Enter your question about Thai rice") submit_btn = gr.Button(value="ถาม") rag_output = gr.Textbox(label="RAG Response", interactive=False) rag_time_output = gr.Textbox(label="RAG Time (s)", interactive=False) rag_memory_output = gr.Textbox(label="RAG Memory (KB)", interactive=False) graphrag_output = gr.Textbox(label="GraphRAG Response", interactive=False) graphrag_time_output = gr.Textbox(label="GraphRAG Time (s)", interactive=False) graphrag_memory_output = gr.Textbox(label="GraphRAG Memory (KB)", interactive=False) feedback = gr.Radio(label="Which response is better?", choices=["A ดีกว่า", "B ดีกว่า", "เท่ากัน", "แย่ทั้งคู่"]) submit_feedback = gr.Button(value="Submit Feedback") # Update Gradio app with time and memory results def display_results(question): results = compare_models(question) return ( results["RAG Response"], results["RAG Time (s)"], results["RAG Memory (KB)"], results["GraphRAG Response"], results["GraphRAG Time (s)"], results["GraphRAG Memory (KB)"] ) # Event handlers submit_btn.click( fn=display_results, inputs=[question_input], outputs=[rag_output, rag_time_output, rag_memory_output, graphrag_output, graphrag_time_output, graphrag_memory_output] ) submit_feedback.click(fn=add_review, inputs=[question_input, rag_output, graphrag_output, feedback]) demo.load(fn=load_data, inputs=None) # Launch the app if __name__ == "__main__": demo.launch()