import gradio as gr import joblib import cv2 import numpy as np from PIL import Image from tensorflow.keras.models import load_model # Define paths to models and load the scaler model_paths = { "Regressor_decision_tree": "multioutput_regressor_decision_tree.joblib", "Regressor_ridge": "regressor_ridge.joblib", "Regressor_elastic_net": "elastic_net_model.joblib", "NN_6_Layers": "NN_Layers_6.keras", "CNN": "cnn_model_bigger.keras", "CNN_with_reductions": "cnn_model_bigger_with_reductions.keras" } scaler = joblib.load("scaler.joblib") # Function to load models based on file extension def load_model_by_type(path): if path.endswith('.joblib'): return joblib.load(path) elif path.endswith('.keras'): return load_model(path) else: raise ValueError(f"Unsupported file extension for file {path}") # Load models with appropriate method models = {name: load_model_by_type(path) for name, path in model_paths.items()} def detect_objects(image, model_name): model = models[model_name] # Assuming Gradio passes image as a numpy array and checking if conversion is needed if image.ndim == 3 and image.shape[2] == 3: # If the image is RGB image_gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) # Convert to grayscale using OpenCV else: image_gray = image # Use the image as is if already grayscale # Check if the model requires CNN specific preprocessing if model_name in ["CNN", "CNN_with_reductions"]: image_processed = np.array(image_gray) image_processed = image_processed.reshape(1, image_gray.shape[0], image_gray.shape[1], 1) image_processed = image_processed.astype('float32') image_processed /= 255 # Normalize pixel values else: # Assuming other models might expect flattened, scaled input image_processed = image_gray.flatten().reshape(1, -1) image_processed = scaler.transform(image_processed) # Make prediction predictions = model.predict(image_processed) x, y, width, height = predictions[0] # Draw bounding box on a copy of the original image (converted back to RGB for color drawing) original_image_rgb = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # Ensure image is in RGB cv2.rectangle(original_image_rgb, (int(x), int(y)), (int(x + width), int(y + height)), (0, 255, 0), 2) return Image.fromarray(original_image_rgb) # Gradio interface setup iface = gr.Interface( fn=detect_objects, inputs=[gr.components.Image(), gr.components.Dropdown(list(model_paths.keys()))], outputs=gr.components.Image(), title="Object Detection", description="Select a model and upload an image to detect objects." ) iface.launch(show_error=True, share=True, debug=True)