import os import json import pandas as pd from docx import Document from PyPDF2 import PdfReader from huggingface_hub import InferenceClient import gradio as gr # Retrieve Hugging Face API key from environment variable (secret) API_KEY = os.getenv("APIHUGGING") if not API_KEY: raise ValueError("Hugging Face API key not found. Please set the 'APIHUGGING' secret.") # Initialize Hugging Face Inference Client client = InferenceClient(api_key=API_KEY) # Function to extract text from various file types def extract_file_content(file_path): _, file_extension = os.path.splitext(file_path.name) if file_extension.lower() in [".txt"]: return file_path.read().decode("utf-8") elif file_extension.lower() in [".csv"]: df = pd.read_csv(file_path) return df.to_string(index=False) elif file_extension.lower() in [".json"]: data = json.load(file_path) return json.dumps(data, indent=4) elif file_extension.lower() in [".pdf"]: reader = PdfReader(file_path) text = "" for page in reader.pages: text += page.extract_text() return text elif file_extension.lower() in [".docx"]: doc = Document(file_path) return "\n".join([para.text for para in doc.paragraphs]) else: return "Unsupported file type." # Function to interact with the Hugging Face model def get_bot_response(file, prompt): try: # Extract content from the uploaded file file_content = extract_file_content(file) # Prepare conversation history messages = [ {"role": "user", "content": f"{prompt}\n\nFile Content:\n{file_content}"} ] # Call Hugging Face API bot_response = client.chat_completions.create( model="Qwen/Qwen2.5-Coder-32B-Instruct", messages=messages, max_tokens=500 ) # Collect and return the bot's response return bot_response.choices[0].message.content except Exception as e: return f"Error: {str(e)}" # Gradio Interface with gr.Blocks() as app: gr.Markdown("# 📁 AI File Chat with Hugging Face 🚀") gr.Markdown("Upload any file and ask the AI a question based on the file's content!") with gr.Row(): file_input = gr.File(label="Upload File") prompt_input = gr.Textbox(label="Enter your question", placeholder="Ask something about the uploaded file...") output = gr.Textbox(label="AI Response") submit_button = gr.Button("Submit") submit_button.click(get_bot_response, inputs=[file_input, prompt_input], outputs=output) # Launch the Gradio app if __name__ == "__main__": app.launch()