from diffusers import AutoencoderKL, UNet2DConditionModel, LMSDiscreteScheduler from transformers import CLIPTextModel, CLIPTokenizer from tqdm.auto import tqdm from PIL import Image import torch class MingleModel: def __init__(self): # Set device self.torch_device = "cuda" if torch.cuda.is_available() else "cpu" # Load the autoencoder model which will be used to decode the latents into image space. use_auth_token = "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" self.vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae", use_auth_token=use_auth_token).to(self.torch_device) # Load the tokenizer and text encoder to tokenize and encode the text. self.tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14", use_auth_token=use_auth_token) self.text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14", use_auth_token=use_auth_token).to(self.torch_device) # # The UNet model for generating the latents. self.unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet",use_auth_token=use_auth_token).to(self.torch_device) # The noise scheduler self.scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000) def tokenizer(self, prompt): return self.tokenizer([prompt], padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt") def text_encoder(self, text_input): return self.text_encoder(text_input.input_ids.to(self.torch_device))[0] def latents_to_pil(self, latents): # bath of latents -> list of images latents = (1 / 0.18215) * latents with torch.no_grad(): image = self.vae.decode(latents).sample image = (image / 2 + 0.5).clamp(0, 1) image = image.detach().cpu().permute(0, 2, 3, 1).numpy() images = (image * 255).round().astype("uint8") pil_images = [Image.fromarray(image) for image in images] return pil_images def generate_with_embs(self, text_embeddings, generator_int=32, num_inference_steps=30, guidance_scale=7.5): height = 512 # default height of Stable Diffusion width = 512 # default width of Stable Diffusion num_inference_steps = num_inference_steps # Number of denoising steps guidance_scale = guidance_scale # Scale for classifier-free guidance generator = torch.manual_seed(generator_int) # Seed generator to create the inital latent noise batch_size = 1 max_length = 77 uncond_input = self.tokenizer( [""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt" ) with torch.no_grad(): uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.torch_device))[0] text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) # Prep Scheduler self.scheduler.set_timesteps(num_inference_steps) # Prep latents latents = torch.randn((batch_size, self.unet.in_channels, height // 8, width // 8), generator=generator) latents = latents.to(self.torch_device) latents = latents * self.scheduler.init_noise_sigma # Loop for i, t in tqdm(enumerate(self.scheduler.timesteps)): # expand the latents if we are doing classifier-free guidance to avoid doing two forward passes. latent_model_input = torch.cat([latents] * 2) sigma = self.scheduler.sigmas[i] latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # predict the noise residual with torch.no_grad(): noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"] # perform guidance noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents).prev_sample return self.latents_to_pil(latents)[0]