import logging from omegaconf import OmegaConf import copy import spacy import torch from torch import nn from torchvision import transforms as T from torchvision.transforms.functional import InterpolationMode from transformers import LlamaTokenizer, BertTokenizer, BitsAndBytesConfig import sys sys.path.append("./") from model.knwl_model import KnwlModel, KnwlEncoder from model.utils import drop_sequence_mask, cat_pad, disabled_train, download_cached_file from model.eva_vit import create_eva_vit_g from model.qformer import BertConfig, BertLMHeadModel from model.llama import LlamaForCausalLM, LlamaConfig class GPTK(nn.Module): def __init__( self, img_size=224, drop_path_rate=0, use_grad_checkpoint=True, vit_precision="fp16", num_query_token=32, llm_model="", prompt="", max_txt_len=128, max_output_txt_len=256, d_knwl=768, topk={}, pc=0.1, pt=0.1, pv=0.1 ): super().__init__() self.topk = {k: v for k, v in topk.items() if v > 0} self.pc = pc self.pt = pt self.pv = pv # LLM self.llm_tokenizer = LlamaTokenizer.from_pretrained(llm_model, use_fast=False, truncation_side="left") llm_config = LlamaConfig.from_pretrained(llm_model) llm_config.gradient_checkpointing = True llm_config.use_cache = True quantization_config = BitsAndBytesConfig( load_in_8bit=True, llm_int8_threshold=6.0, llm_int8_has_fp16_weight=False, bnb_4bit_compute_dtype=torch.float16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type='nf4' ) self.llm_model = LlamaForCausalLM.from_pretrained( llm_model, config=llm_config, torch_dtype=torch.float16, quantization_config=quantization_config ) self.llm_tokenizer.add_special_tokens({'pad_token': '[PAD]'}) self.llm_tokenizer.add_special_tokens({'bos_token': ''}) self.llm_tokenizer.add_special_tokens({'eos_token': ''}) self.llm_tokenizer.add_special_tokens({'unk_token': ''}) self.llm_model.resize_token_embeddings(len(self.llm_tokenizer)) for name, param in self.llm_model.named_parameters(): param.requires_grad = False # ViT image encoder self.visual_encoder, self.ln_vision = self.init_vision_encoder( img_size, drop_path_rate, use_grad_checkpoint, vit_precision ) for name, param in self.visual_encoder.named_parameters(): param.requires_grad = False self.visual_encoder = self.visual_encoder.eval() self.visual_encoder.train = disabled_train logging.info("freeze vision encoder") # Q-former self.tokenizer = self.init_tokenizer(truncation_side="left") self.Qformer, self.query_tokens = self.init_Qformer( num_query_token, self.visual_encoder.num_features ) self.Qformer.resize_token_embeddings(len(self.tokenizer)) self.Qformer.cls = None self.llm_proj = nn.Linear( self.Qformer.config.hidden_size, self.llm_model.config.hidden_size ) # Knowledge modules if len(self.topk) > 0: # all added modules must contain "knwl" in their names self.knwl_encoder = KnwlEncoder(self.visual_encoder.num_features) self.knwl_query = copy.deepcopy(self.query_tokens) for k in self.topk.keys(): m = KnwlModel(d_knwl=d_knwl, d_out=self.knwl_encoder.d, pt=pt) setattr(self, f"knwl_{k}", m) self.max_txt_len = max_txt_len self.max_output_txt_len = max_output_txt_len self.prompt = prompt prompt_tokens = self.llm_tokenizer(self.prompt, return_tensors="pt") self.prompt_length = prompt_tokens.attention_mask.sum(1) @classmethod def init_tokenizer(cls, truncation_side="right"): tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", truncation_side=truncation_side) tokenizer.add_special_tokens({"bos_token": "[DEC]"}) return tokenizer @classmethod def init_Qformer(cls, num_query_token, vision_width, cross_attention_freq=2): encoder_config = BertConfig.from_pretrained("bert-base-uncased") encoder_config.encoder_width = vision_width # insert cross-attention layer every other block encoder_config.add_cross_attention = True encoder_config.cross_attention_freq = cross_attention_freq encoder_config.query_length = num_query_token logging.disable(logging.CRITICAL) Qformer = BertLMHeadModel.from_pretrained( "bert-base-uncased", config=encoder_config ) logging.disable(logging.NOTSET) query_tokens = nn.Parameter( torch.zeros(1, num_query_token, encoder_config.hidden_size) ) query_tokens.data.normal_(mean=0.0, std=encoder_config.initializer_range) return Qformer, query_tokens @classmethod def init_vision_encoder(cls, img_size, drop_path_rate, use_grad_checkpoint, precision): visual_encoder = create_eva_vit_g( img_size, drop_path_rate, use_grad_checkpoint, precision ) ln_vision = nn.LayerNorm(visual_encoder.num_features) return visual_encoder, ln_vision def concat_text_input_output(self, input_ids, input_atts, output_ids, output_atts): input_part_targets_len = [] llm_tokens = {"input_ids": [], "attention_mask": []} for i in range(input_ids.size(0)): this_input_ones = input_atts[i].sum() input_part_targets_len.append(this_input_ones) llm_tokens['input_ids'].append( torch.cat([ input_ids[i][:this_input_ones], output_ids[i][1:], input_ids[i][this_input_ones:] ]) ) llm_tokens['attention_mask'].append( torch.cat([ input_atts[i][:this_input_ones], output_atts[i][1:], input_atts[i][this_input_ones:] ]) ) llm_tokens['input_ids'] = torch.stack(llm_tokens['input_ids']) llm_tokens['attention_mask'] = torch.stack(llm_tokens['attention_mask']) return llm_tokens, input_part_targets_len def forward_qformer(self, image, knowledge, prompt): views = [] # knowledge embeds if len(self.topk) > 0 and knowledge is not None: embeds, masks = [], [] for k in knowledge.keys(): embeds_k, masks_k = getattr(self, f"knwl_{k}")(knowledge[k]) embeds.append(embeds_k) masks.append(masks_k) embeds = cat_pad(embeds, cat_dim=0, pad_dim=1) masks = cat_pad(masks, cat_dim=0, pad_dim=1) embeds = self.knwl_encoder( inputs_embeds=embeds, attention_mask=masks ) embeds = nn.functional.dropout( embeds, p=self.pc, training=self.training ) N, (S, d) = len(image), embeds.shape[1:] embeds = embeds.reshape(-1, N, S, d) embeds = embeds.transpose(0, 1).flatten(1, 2) masks = masks.reshape(-1, N, S) masks = masks.transpose(0, 1).flatten(1, 2) views.append((embeds, masks, self.knwl_query)) # image embeds embeds = self.ln_vision(self.visual_encoder(image)) embeds = nn.functional.dropout( embeds, p=self.pc, training=self.training ) masks = drop_sequence_mask( *embeds.shape[:2], image.device, self.pt, self.training ) views.append((embeds, masks, self.query_tokens)) # Qformer forward text_Qformer = self.tokenizer( prompt, padding='longest', truncation=True, max_length=self.max_txt_len, return_tensors="pt", ).to(image.device) qfm_embeds, qfm_masks = [], [] for embeds, masks, query in views: query = query.expand(image.shape[0], -1, -1) query_atts = torch.ones(query.size()[:-1], dtype=torch.long).to(embeds.device) Qformer_atts = torch.cat([query_atts, text_Qformer.attention_mask], dim=1) query_output = self.Qformer.bert( text_Qformer.input_ids, attention_mask=Qformer_atts, query_embeds=query, encoder_hidden_states=embeds, encoder_attention_mask=masks, return_dict=True, ) embeds = self.llm_proj(query_output.last_hidden_state[:, :query.size(1),:]) masks = torch.ones(embeds.size()[:-1], dtype=torch.long).to(image.device) qfm_embeds.append(embeds) qfm_masks.append(masks) # drop views if self.training: view_masks = drop_sequence_mask(len(image), len(qfm_embeds), image.device, self.pv) qfm_masks = [m * view_masks[:, i:(i+1)] for i, m in enumerate(qfm_masks)] llm_embeds = torch.cat(qfm_embeds, dim=1) llm_masks = torch.cat(qfm_masks, dim=1) return llm_embeds, llm_masks def forward(self, samples): inputs_llm, atts_llm = self.forward_qformer( samples["image"], samples["knowledge"], samples["prompt"] ) device = inputs_llm.device self.llm_tokenizer.padding_side = "right" self.llm_tokenizer.truncation_side = 'left' text_input_tokens = self.llm_tokenizer( samples['prompt'], return_tensors="pt", padding="longest", truncation=True, max_length=self.max_txt_len, ).to(device) self.llm_tokenizer.truncation_side = 'right' text_output_tokens = self.llm_tokenizer( [t + self.llm_tokenizer.eos_token for t in samples['output']], return_tensors="pt", padding="longest", truncation=True, max_length=self.max_output_txt_len, ).to(device) llm_tokens, input_part_targets_len = self.concat_text_input_output( text_input_tokens.input_ids, text_input_tokens.attention_mask, text_output_tokens.input_ids, text_output_tokens.attention_mask, ) # do not apply loss to the padding targets = llm_tokens['input_ids'].masked_fill( llm_tokens['input_ids'] == self.llm_tokenizer.pad_token_id, -100 ) # do not apply loss to the text input (i.e., instruction) for i, l in enumerate(input_part_targets_len): targets[i][:l] = -100 # do not apply loss to the query tokens empty_targets = ( torch.ones(atts_llm.size(), dtype=torch.long).to(device).fill_(-100) ) targets = torch.cat([empty_targets, targets], dim=1) inputs_embeds = self.llm_model.get_input_embeddings()(llm_tokens['input_ids']) inputs_embeds = torch.cat([inputs_llm, inputs_embeds], dim=1) attention_mask = torch.cat([atts_llm, llm_tokens['attention_mask']], dim=1) outputs = self.llm_model( inputs_embeds=inputs_embeds, attention_mask=attention_mask, return_dict=True, labels=targets, ) loss = outputs.loss return loss @torch.no_grad() def generate( self, samples, use_nucleus_sampling=False, num_beams=5, max_length=256, min_length=1, top_p=0.9, repetition_penalty=1.5, length_penalty=1, num_captions=1, temperature=1, streamer=None, auto_cast=False ): prompt = samples["prompt"] if "prompt" in samples.keys() else self.prompt if isinstance(prompt, str): prompt = [prompt] * samples["image"].size(0) else: assert len(prompt) == samples["image"].size(0), \ "The number of prompts must be equal to the batch size." with torch.cuda.amp.autocast(auto_cast): inputs_llm, atts_llm = self.forward_qformer( samples["image"], samples["knowledge"], prompt ) device = inputs_llm.device self.llm_tokenizer.padding_side = "left" llm_tokens = self.llm_tokenizer( prompt, padding="longest", return_tensors="pt" ).to(device) inputs_embeds = self.llm_model.get_input_embeddings()(llm_tokens.input_ids) inputs_embeds = torch.cat([inputs_llm, inputs_embeds], dim=1) attention_mask = torch.cat([atts_llm, llm_tokens.attention_mask], dim=1) outputs = self.llm_model.generate( inputs_embeds=inputs_embeds, attention_mask=attention_mask, do_sample=use_nucleus_sampling, top_p=top_p, temperature=temperature, num_beams=num_beams, max_length=max_length, min_length=min_length, repetition_penalty=repetition_penalty, length_penalty=length_penalty, num_return_sequences=num_captions, streamer=streamer ) if streamer is None: outputs[outputs == 0] = 2 # convert output id 0 to 2 (eos_token_id) output_text = self.llm_tokenizer.batch_decode(outputs, skip_special_tokens=True) output_text = [text.strip() for text in output_text] return output_text else: return outputs @torch.no_grad() def predict_answers( self, samples, num_beams=5, max_len=10, min_len=1, length_penalty=0 ): output_text = self.generate( samples, num_beams=num_beams, max_length=max_len, min_length=min_len, length_penalty=length_penalty ) output_text = self._lemmatize(output_text) return output_text def _lemmatize(self, answers): lemmatizer = spacy.load("en_core_web_sm") def apply(answer): doc = lemmatizer(answer) words = [] for token in doc: if token.pos_ in ["NOUN", "VERB"]: words.append(token.lemma_) else: words.append(token.text) answer = " ".join(words) return answer return [apply(answer) for answer in answers] @classmethod def from_config(cls, cfg): llm_model = cfg.get("llm_model") num_query_token = cfg.get("num_query_token", 32) img_size = cfg.get("image_size", 224) drop_path_rate = cfg.get("drop_path_rate", 0) use_grad_checkpoint = cfg.get("use_grad_checkpoint", True) vit_precision = cfg.get("vit_precision", "fp16") prompt = cfg.get("prompt", "") max_txt_len = cfg.get("max_txt_len", 128) max_output_txt_len = cfg.get("max_output_txt_len", 256) d_knwl = cfg.get("d_knwl", 768) topk = cfg.get("topk", {}) pc = cfg.get("pc", 0.1) pt = cfg.get("pt", 0.1) pv = cfg.get("pv", 0.4) model = cls( img_size=img_size, drop_path_rate=drop_path_rate, use_grad_checkpoint=use_grad_checkpoint, vit_precision=vit_precision, num_query_token=num_query_token, llm_model=llm_model, prompt=prompt, max_txt_len=max_txt_len, max_output_txt_len=max_output_txt_len, d_knwl=d_knwl, topk=topk, pc=pc, pt=pt, pv=pv ) pretrain_path = cfg.get("pretrained", None) assert pretrain_path is not None, "Pretrain_path is None." cached_file = download_cached_file( pretrain_path, check_hash=False, progress=True ) checkpoint = torch.load(cached_file, map_location="cpu") state_dict = checkpoint["model"] model.load_state_dict(state_dict, strict=False) logging.info("load checkpoint from %s" % pretrain_path) return model def get_gptk_image_transform(model_type: str = "gptk-7b"): assert model_type in ("gptk-7b", "gptk-13b") model_config = OmegaConf.load(f"model/{model_type}.yaml") size = model_config.get("image_size", 224) normalizer = T.Normalize( mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711) ) trans_train = T.Compose([ T.RandomResizedCrop( size=(size, size), scale=(0.5, 1.0), interpolation=InterpolationMode.BICUBIC, ), T.RandomHorizontalFlip(), T.ToTensor(), normalizer ]) trans_val = T.Compose([ T.Resize( size=(size, size), interpolation=InterpolationMode.BICUBIC, ), T.RandomHorizontalFlip(), T.ToTensor(), normalizer ]) return trans_train, trans_val def get_gptk_model( model_type: str = "gptk-7b", d_knwl: int = 768, topk: dict = {"whole": 0, "five": 0, "nine": 0}, pc: float = 0.1, pt: float = 0.1, pv: float = 0.4 ): assert model_type in ("gptk-7b", "gptk-13b") model_config = OmegaConf.load(f"model/{model_type}.yaml") model_config.pv = pv model_config.pt = pt model_config.pc = pc model_config.topk = {k: v for k, v in topk.items() if v > 0} model_config.d_knwl = d_knwl model = GPTK.from_config(model_config) if sum(topk.values()) > 0: model.knwl_query.data.copy_(model.query_tokens.data.clone().detach()) return model