from transformers import AutoModel, AutoTokenizer import os import ipdb import gradio as gr import mdtex2html from model.openllama import OpenLLAMAPEFTModel import torch import json from header import TaskType, LoraConfig # init the model args = { 'model': 'openllama_peft', 'imagebind_ckpt_path': 'pretrained_ckpt/imagebind_ckpt', 'vicuna_ckpt_path': 'openllmplayground/vicuna_7b_v0', 'delta_ckpt_path': 'pretrained_ckpt/pandagpt_ckpt/7b/pytorch_model.pt', 'stage': 2, 'max_tgt_len': 128, 'lora_r': 32, 'lora_alpha': 32, 'lora_dropout': 0.1, } model = OpenLLAMAPEFTModel(**args) delta_ckpt = torch.load(args['delta_ckpt_path'], map_location=torch.device('cpu')) model.load_state_dict(delta_ckpt, strict=False) model = model.half().cuda().eval() if torch.cuda.is_available() else model.eval() print(f'[!] init the model over ...') """Override Chatbot.postprocess""" def postprocess(self, y): if y is None: return [] for i, (message, response) in enumerate(y): y[i] = ( None if message is None else mdtex2html.convert((message)), None if response is None else mdtex2html.convert(response), ) return y gr.Chatbot.postprocess = postprocess def parse_text(text): """copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/""" lines = text.split("\n") lines = [line for line in lines if line != ""] count = 0 for i, line in enumerate(lines): if "```" in line: count += 1 items = line.split('`') if count % 2 == 1: lines[i] = f'
'
            else:
                lines[i] = f'
' else: if i > 0: if count % 2 == 1: line = line.replace("`", "\`") line = line.replace("<", "<") line = line.replace(">", ">") line = line.replace(" ", " ") line = line.replace("*", "*") line = line.replace("_", "_") line = line.replace("-", "-") line = line.replace(".", ".") line = line.replace("!", "!") line = line.replace("(", "(") line = line.replace(")", ")") line = line.replace("$", "$") lines[i] = "
"+line text = "".join(lines) return text def predict( input, image_path, audio_path, video_path, thermal_path, chatbot, max_length, top_p, temperature, history, modality_cache, ): if image_path is None and audio_path is None and video_path is None and thermal_path is None: return [(input, "There is no image/audio/video provided. Please upload the file to start a conversation.")] else: print(f'[!] image path: {image_path}\n[!] audio path: {audio_path}\n[!] video path: {video_path}\n[!] thermal pah: {thermal_path}') # prepare the prompt prompt_text = '' for idx, (q, a) in enumerate(history): if idx == 0: prompt_text += f'{q}\n### Assistant: {a}\n###' else: prompt_text += f' Human: {q}\n### Assistant: {a}\n###' if len(history) == 0: prompt_text += f'{input}' else: prompt_text += f' Human: {input}' response = model.generate({ 'prompt': prompt_text, 'image_paths': [image_path] if image_path else [], 'audio_paths': [audio_path] if audio_path else [], 'video_paths': [video_path] if video_path else [], 'thermal_paths': [thermal_path] if thermal_path else [], 'top_p': top_p, 'temperature': temperature, 'max_tgt_len': max_length, 'modality_embeds': modality_cache }) chatbot.append((parse_text(input), parse_text(response))) history.append((input, response)) return chatbot, history, modality_cache def reset_user_input(): return gr.update(value='') def reset_state(): return None, None, None, None, [], [], [] with gr.Blocks() as demo: gr.HTML("""

PandaGPT

""") gr.Markdown('''We note that the current online demo uses the 7B version of PandaGPT due to the limitation of computation resource. Better results should be expected when switching to the 13B version of PandaGPT. For more details on how to run 13B PandaGPT, please refer to our [main project repository](https://github.com/yxuansu/PandaGPT). Many thanks to Huggingface for providing us with the GPU grant to support our demo 🤗! We apologize for the internal error of pytorchvideo library that occurs when parsing videos in concurrent requests. We are actively working on resolving this issue 😤''') with gr.Row(scale=4): with gr.Column(scale=2): image_path = gr.Image(type="filepath", label="Image", value=None) gr.Examples( [ os.path.join(os.path.dirname(__file__), "assets/images/bird_image.jpg"), os.path.join(os.path.dirname(__file__), "assets/images/dog_image.jpg"), os.path.join(os.path.dirname(__file__), "assets/images/car_image.jpg"), ], image_path ) with gr.Column(scale=2): audio_path = gr.Audio(type="filepath", label="Audio", value=None) gr.Examples( [ os.path.join(os.path.dirname(__file__), "assets/audios/bird_audio.wav"), os.path.join(os.path.dirname(__file__), "assets/audios/dog_audio.wav"), os.path.join(os.path.dirname(__file__), "assets/audios/car_audio.wav"), ], audio_path ) with gr.Row(scale=4): with gr.Column(scale=2): video_path = gr.Video(type='file', label="Video") gr.Examples( [ os.path.join(os.path.dirname(__file__), "assets/videos/world.mp4"), os.path.join(os.path.dirname(__file__), "assets/videos/a.mp4"), ], video_path ) with gr.Column(scale=2): thermal_path = gr.Image(type="filepath", label="Thermal Image", value=None) gr.Examples( [ os.path.join(os.path.dirname(__file__), "assets/thermals/190662.jpg"), os.path.join(os.path.dirname(__file__), "assets/thermals/210009.jpg"), ], thermal_path ) chatbot = gr.Chatbot() with gr.Row(): with gr.Column(scale=4): with gr.Column(scale=12): user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10).style(container=False) with gr.Column(min_width=32, scale=1): submitBtn = gr.Button("Submit", variant="primary") with gr.Column(scale=1): emptyBtn = gr.Button("Clear History") max_length = gr.Slider(0, 512, value=128, step=1.0, label="Maximum length", interactive=True) top_p = gr.Slider(0, 1, value=0.01, step=0.01, label="Top P", interactive=True) temperature = gr.Slider(0, 1, value=0.8, step=0.01, label="Temperature", interactive=True) history = gr.State([]) modality_cache = gr.State([]) submitBtn.click( predict, [ user_input, image_path, audio_path, video_path, thermal_path, chatbot, max_length, top_p, temperature, history, modality_cache, ], [ chatbot, history, modality_cache ], show_progress=True ) submitBtn.click(reset_user_input, [], [user_input]) emptyBtn.click(reset_state, outputs=[ image_path, audio_path, video_path, thermal_path, chatbot, history, modality_cache ], show_progress=True) demo.launch(enable_queue=True)