from header import * import os import torch.nn.functional as F from .ImageBind import * from .ImageBind import data from .modeling_llama import LlamaForCausalLM from transformers import StoppingCriteria, StoppingCriteriaList import torch from torch.nn.utils import rnn class StoppingCriteriaSub(StoppingCriteria): def __init__(self, stops = [], encounters=1): super().__init__() self.stops = stops self.ENCOUNTERS = encounters def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor): stop_count = 0 for stop in self.stops: stop_count = (stop == input_ids[0]).sum().item() if stop_count >= self.ENCOUNTERS: return True return False def build_one_instance(tokenizer, conversation): text_list = [] turn_num = len(conversation) input_ids, target_ids = [], [] for i in range(turn_num): turn = conversation[i] role = turn['from'] if i == 0: # the first human turn assert role == 'human' text = ' ' + turn['value'] + '\n### Assistant:' one_input_id = tokenizer(text, add_special_tokens=False).input_ids input_ids += one_input_id target_ids += [-100]*len(one_input_id) # do not perform loss regression on human prompt else: if role == 'human': text = 'Human: ' + turn['value'] + '\n### Assistant:' one_input_id = tokenizer(text, add_special_tokens=False).input_ids input_ids += one_input_id target_ids += [-100]*len(one_input_id) elif role == 'gpt': text = turn['value'] + '\n###' one_input_id = tokenizer(text, add_special_tokens=False).input_ids input_ids += one_input_id target_ids += one_input_id else: raise Exception('Wrong Role!!!') text_list.append(text) assert len(input_ids) == len(target_ids) return text_list, input_ids, target_ids def process_batch_instance(tokenizer, batch_of_conversations, max_tgt_len): batch_input_ids, batch_target_ids = [], [] for conversation in batch_of_conversations: _, one_input_ids, one_target_ids = build_one_instance(tokenizer, conversation) batch_input_ids.append(torch.LongTensor(one_input_ids)) batch_target_ids.append(torch.LongTensor(one_target_ids)) input_ids = rnn.pad_sequence(batch_input_ids, batch_first=True, padding_value=tokenizer.pad_token_id) target_ids = rnn.pad_sequence(batch_target_ids, batch_first=True, padding_value=-100) assert input_ids.size() == target_ids.size() input_ids = input_ids[:,:max_tgt_len] target_ids = target_ids[:,:max_tgt_len] attention_mask = input_ids.ne(tokenizer.pad_token_id) assert attention_mask.size() == input_ids.size() return input_ids, target_ids, attention_mask.long() PROMPT_START = '### Human: ' class OpenLLAMAPEFTModel(nn.Module): '''LoRA for LLaMa model''' def __init__(self, **args): super(OpenLLAMAPEFTModel, self).__init__() self.args = args imagebind_ckpt_path = args['imagebind_ckpt_path'] vicuna_ckpt_path = args['vicuna_ckpt_path'] max_tgt_len = args['max_tgt_len'] stage = args['stage'] print (f'Initializing visual encoder from {imagebind_ckpt_path} ...') self.visual_encoder, self.visual_hidden_size = \ imagebind_model.imagebind_huge(pretrained=True, store_path=imagebind_ckpt_path) # free vision encoder for name, param in self.visual_encoder.named_parameters(): param.requires_grad = False self.visual_encoder.eval() print ('Visual encoder initialized.') print (f'Initializing language decoder from {vicuna_ckpt_path} ...') # add the lora module peft_config = LoraConfig( task_type=TaskType.CAUSAL_LM, inference_mode=False, r=self.args['lora_r'], lora_alpha=self.args['lora_alpha'], lora_dropout=self.args['lora_dropout'], target_modules=['q_proj', 'k_proj', 'v_proj', 'o_proj'] ) self.llama_model = LlamaForCausalLM.from_pretrained(vicuna_ckpt_path, use_auth_token=os.environ['API_TOKEN']) self.llama_model = get_peft_model(self.llama_model, peft_config) self.llama_model.print_trainable_parameters() self.llama_tokenizer = LlamaTokenizer.from_pretrained(vicuna_ckpt_path, use_fast=False, use_auth_token=os.environ['API_TOKEN']) self.llama_tokenizer.pad_token = self.llama_tokenizer.eos_token self.llama_tokenizer.padding_side = "right" print ('Language decoder initialized.') self.llama_proj = nn.Linear( self.visual_hidden_size, self.llama_model.config.hidden_size ) self.max_tgt_len = max_tgt_len self.device = torch.cuda.current_device() if torch.cuda.is_available() else torch.device('cpu') def encode_video(self, video_paths): inputs = {ModalityType.VISION: data.load_and_transform_video_data(video_paths, self.device)} # convert into visual dtype inputs = {key: inputs[key].to(self.llama_model.dtype) for key in inputs} with torch.no_grad(): embeddings = self.visual_encoder(inputs) video_embeds = embeddings[ModalityType.VISION] # bsz x 1024 inputs_llama = self.llama_proj(video_embeds).unsqueeze(1) # bsz x 1 x llama_size atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(self.device) # bsz x 1 return inputs_llama, atts_llama def encode_audio(self, audio_paths): inputs = {ModalityType.AUDIO: data.load_and_transform_audio_data(audio_paths, self.device)} # convert into visual dtype inputs = {key: inputs[key].to(self.llama_model.dtype) for key in inputs} with torch.no_grad(): embeddings = self.visual_encoder(inputs) audio_embeds = embeddings[ModalityType.AUDIO] # bsz x 1024 inputs_llama = self.llama_proj(audio_embeds).unsqueeze(1) # bsz x 1 x llama_size atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(self.device) # bsz x 1 return inputs_llama, atts_llama def encode_thermal(self, thermal_paths): inputs = {ModalityType.THERMAL: data.load_and_transform_thermal_data(thermal_paths, self.device)} # convert into visual dtype inputs = {key: inputs[key].to(self.llama_model.dtype) for key in inputs} with torch.no_grad(): embeddings = self.visual_encoder(inputs) image_embeds = embeddings['thermal'] # bsz x 1024 inputs_llama = self.llama_proj(image_embeds).unsqueeze(1) # bsz x 1 x llama_size atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(self.device) # bsz x 1 return inputs_llama, atts_llama def encode_image(self, image_paths): inputs = {ModalityType.VISION: data.load_and_transform_vision_data(image_paths, self.device)} # convert into visual dtype inputs = {key: inputs[key].to(self.llama_model.dtype) for key in inputs} with torch.no_grad(): embeddings = self.visual_encoder(inputs) image_embeds = embeddings['vision'] # bsz x 1024 inputs_llama = self.llama_proj(image_embeds).unsqueeze(1) # bsz x 1 x llama_size atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(self.device) # bsz x 1 return inputs_llama, atts_llama def prompt_wrap(self, img_embeds, input_ids, target_ids, attention_mask): ''' input_ids, target_ids, attention_mask: bsz x s2 ''' input_ids = input_ids.to(self.device) # bsz x s2 target_ids = target_ids.to(self.device) # bsz x s2 attention_mask = attention_mask.to(self.device) # bsz x s2 batch_size = img_embeds.shape[0] p_before = PROMPT_START p_before_tokens = self.llama_tokenizer(p_before, return_tensors="pt", add_special_tokens=False).to(self.device) # peft model need deeper call p_before_embeds = self.llama_model.model.model.embed_tokens(p_before_tokens.input_ids).expand(batch_size, -1, -1) # bsz x s1 x embed_dim p_after_embeds = self.llama_model.model.model.embed_tokens(input_ids).expand(batch_size, -1, -1) # bsz x s2 x embed_dim bos = torch.ones([batch_size, 1], dtype=p_before_tokens.input_ids.dtype, device=p_before_tokens.input_ids.device) * self.llama_tokenizer.bos_token_id # bsz x 1 bos_embeds = self.llama_model.model.model.embed_tokens(bos) # bsz x 1 x embed_dim inputs_embeds = torch.cat([bos_embeds, p_before_embeds, img_embeds, p_after_embeds], dim=1) # bsz x (1+s1+1+s2) x embed_dim # create targets empty_targets = ( torch.ones([batch_size, 1+p_before_embeds.size()[1]+1], # 1 (bos) + s1 + 1 (image vector) dtype=torch.long).to(self.device).fill_(-100) ) # bsz x (1 + s1 + 1) targets = torch.cat([empty_targets, target_ids], dim=1) # bsz x (1 + s1 + 1 + s2) assert inputs_embeds.size()[1] == targets.size()[1] atts_prefix = torch.ones([batch_size, 1+p_before_embeds.size()[1]+1], dtype=torch.long).to(self.device) # bsz x (1 + s1 +1) attention_mask = torch.cat([atts_prefix, attention_mask], dim=1) assert attention_mask.size() == targets.size() # bsz x (1 + s1 + 1 + s2) return inputs_embeds, targets, attention_mask def forward(self, inputs): image_paths = inputs['image_paths'] img_embeds, _ = self.encode_image(image_paths) output_texts = inputs['output_texts'] input_ids, target_ids, attention_mask = process_batch_instance(self.llama_tokenizer, output_texts, self.max_tgt_len) inputs_embeds, targets, attention_mask = self.prompt_wrap(img_embeds, input_ids, target_ids, attention_mask) outputs = self.llama_model( inputs_embeds=inputs_embeds, attention_mask=attention_mask, return_dict=True, labels=targets, ) loss = outputs.loss # calculate the token accuarcy chosen_tokens = torch.max(outputs.logits, dim=-1)[1][:, 1:-1] # [B, S-1] labels = targets[:, 2:] gen_acc = (chosen_tokens.reshape(-1) == labels.reshape(-1)).to(torch.long) # [B*S] valid_mask = (labels != -100).reshape(-1) valid_tokens = gen_acc & valid_mask # [B*S] gen_acc = valid_tokens.sum().item() / valid_mask.sum().item() return loss, gen_acc def extract_multimodal_feature(self, inputs): features = [] if inputs['image_paths']: image_embeds, _ = self.encode_image(inputs['image_paths']) features.append(image_embeds) if inputs['audio_paths']: audio_embeds, _ = self.encode_audio(inputs['audio_paths']) features.append(audio_embeds) if inputs['video_paths']: video_embeds, _ = self.encode_video(inputs['video_paths']) features.append(video_embeds) if inputs['thermal_paths']: thermal_embeds, _ = self.encode_thermal(inputs['thermal_paths']) features.append(thermal_embeds) feature_embeds = torch.cat(features).sum(dim=0).unsqueeze(0) return feature_embeds def prepare_generation_embedding(self, inputs): prompt = inputs['prompt'] if len(inputs['modality_embeds']) == 1: feature_embeds = inputs['modality_embeds'][0] else: feature_embeds = self.extract_multimodal_feature(inputs) inputs['modality_embeds'].append(feature_embeds) batch_size = feature_embeds.shape[0] p_before = PROMPT_START p_before_tokens = self.llama_tokenizer(p_before, return_tensors="pt", add_special_tokens=False).to(self.device) p_before_embeds = self.llama_model.model.model.embed_tokens(p_before_tokens.input_ids).expand(batch_size, -1, -1) # bsz x s1 x embed_dim text = ' ' + prompt + '\n### Assistant:' p_after_tokens = self.llama_tokenizer(text, add_special_tokens=False, return_tensors='pt').to(self.device) p_after_embeds = self.llama_model.model.model.embed_tokens(p_after_tokens.input_ids).expand(batch_size, -1, -1) # bsz x s1 x embed_dim bos = torch.ones([batch_size, 1], dtype=p_before_tokens.input_ids.dtype, device=p_before_tokens.input_ids.device) * self.llama_tokenizer.bos_token_id # bsz x 1 bos_embeds = self.llama_model.model.model.embed_tokens(bos) # bsz x 1 x embed_dim inputs_embeds = torch.cat([bos_embeds, p_before_embeds, feature_embeds, p_after_embeds], dim=1) # bsz x (1+s1+1+s2) x embed_dim return inputs_embeds def generate(self, inputs): ''' inputs = { 'image_paths': optional, 'audio_paths': optional 'video_paths': optional 'thermal_paths': optional 'mode': generation mode, 'prompt': human input prompt, 'max_tgt_len': generation length, 'top_p': top_p, 'temperature': temperature 'modality_embeds': None or torch.tensor 'modality_cache': save the image cache } ''' input_embeds = self.prepare_generation_embedding(inputs) stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=[2277], encounters=1)]) outputs = self.llama_model.generate( inputs_embeds=input_embeds, max_new_tokens=inputs['max_tgt_len'], top_p=inputs['top_p'], temperature=inputs['temperature'], do_sample=True, use_cache=True, stopping_criteria=stopping_criteria, ) output_text = self.llama_tokenizer.decode(outputs[0][:-2], skip_special_tokens=True) return output_text