import os import streamlit as st import pandas as pd import numpy as np import warnings warnings.filterwarnings('ignore') from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer from sklearn.metrics.pairwise import cosine_similarity from joblib import dump, load from sklearn.preprocessing import normalize import re from datasets import load_dataset, Dataset # Load the dataset from Hugging Face Datasets def load_files_from_huggingface(): dataset = load_dataset("GMARTINEZMILLA/deepsinisghtz_dataset", split="train") # Load CSV file cestas_file = dataset['cestas_final.csv'] cestas = pd.read_csv(cestas_file) # Load joblib files count_matrix_file = dataset['count_matrix_0001.joblib'] count_vectorizer_file = dataset['count_vectorizer_0001.joblib'] tf_matrix = load(count_matrix_file) count_vectorizer = load(count_vectorizer_file) return cestas, tf_matrix, count_vectorizer # Save updated files back to Hugging Face Datasets def save_files_to_huggingface(cestas, tf_matrix, count_vectorizer): # Save updated CSV file cestas.to_csv('cestas_final.csv', index=False) # Create new dataset and push to Hugging Face dataset = Dataset.from_pandas(cestas) dataset.push_to_hub("GMARTINEZMILLA/deepsinisghtz_dataset") # Save updated joblib files dump(tf_matrix, 'count_matrix_0002.joblib') # Increment version dump(count_vectorizer, 'count_vectorizer_0002.joblib') # Increment version # Optionally, push joblib files back to Hugging Face Datasets (if supported) # You can manually add these files to the dataset in the Hugging Face interface if needed def get_next_version(file_prefix): """Return the next version number for joblib files.""" # You can hardcode or generate a new version name (e.g., 0002, 0003, etc.) return f"{file_prefix}_0002.joblib" def recomienda_tf(new_basket, cestas, productos): # Load the latest versions of the matrix and vectorizer tf_matrix_file = 'count_matrix_0001.joblib' count_vectorizer_file = 'count_vectorizer_0001.joblib' tf_matrix = load(tf_matrix_file) count_vectorizer = load(count_vectorizer_file) # Convert the new basket into TF (Term Frequency) format new_basket_str = ' '.join(new_basket) new_basket_vector = count_vectorizer.transform([new_basket_str]) new_basket_tf = normalize(new_basket_vector, norm='l1') # Normalize the count matrix for the current basket # Compare the new basket with previous ones similarities = cosine_similarity(new_basket_tf, tf_matrix) # Get the indices of the most similar baskets similar_indices = similarities.argsort()[0][-4:] # Top 4 most similar baskets # Create a dictionary to count recommendations recommendations_count = {} total_similarity = 0 # Recommend products from similar baskets for idx in similar_indices: sim_score = similarities[0][idx] total_similarity += sim_score # Sum of similarities products = cestas.iloc[idx]['Cestas'].split() unique_products = set(products) # Use a set to get unique products for product in unique_products: if product.strip() not in new_basket: # Avoid recommending items already in the basket recommendations_count[product.strip()] = recommendations_count.get(product.strip(), 0) + sim_score # Calculate the relative probability of each recommended product recommendations_with_prob = [] if total_similarity > 0: recommendations_with_prob = [(product, score / total_similarity) for product, score in recommendations_count.items()] else: print("No se encontraron similitudes suficientes para calcular probabilidades.") # Sort recommendations by relevance score recommendations_with_prob.sort(key=lambda x: x[1], reverse=True) # Create a new DataFrame to store recommendations recommendations_data = [] for product, score in recommendations_with_prob: # Search for the product description in the products DataFrame description = productos.loc[productos['ARTICULO'] == product, 'DESCRIPCION'] if not description.empty: recommendations_data.append({ 'ARTICULO': product, 'DESCRIPCION': description.values[0], 'RELEVANCIA': score }) recommendations_df = pd.DataFrame(recommendations_data) return recommendations_df.head(5) def retroalimentacion(cestas, cesta_nueva): # Convert basket from list to string cesta_unida = ' '.join(cesta_nueva) # Debugging message st.write(f"DEBUG: La nueva cesta es {cesta_unida}") # Add the new basket to the historical baskets if it doesn't already exist if not cestas['Cestas'].isin([cesta_unida]).any(): cestas.loc[len(cestas)] = cesta_unida st.success("✓ Cesta añadida al DataFrame.") # Save the updated DataFrame and joblib files back to Hugging Face Datasets save_files_to_huggingface(cestas, tf_matrix, count_vectorizer) st.write("DEBUG: Los archivos se han guardado en Hugging Face Datasets.") else: st.warning("⚠️ La cesta ya existe en el DataFrame.") # Re-vectorize the basket DataFrame count_vectorizer = CountVectorizer() count_vectorizer.fit(cestas['Cestas']) count_matrix = count_vectorizer.transform(cestas['Cestas']) tf_matrix = normalize(count_matrix, norm='l1') # Save new versions of the vectorizer and matrix count_vectorizer_file = get_next_version('count_vectorizer') tf_matrix_file = get_next_version('count_matrix') dump(count_vectorizer, count_vectorizer_file) dump(tf_matrix, tf_matrix_file) # Debugging messages st.write(f"DEBUG: Se ha generado la nueva versión del count_vectorizer: {count_vectorizer_file}") st.write(f"DEBUG: Se ha generado la nueva versión del tf_matrix: {tf_matrix_file}") return None