File size: 19,343 Bytes
89e696a
36f3034
 
00825cb
 
6e09d82
 
89e696a
449983f
2c1bfb4
 
449983f
dfabd70
eca3864
ea19f03
801e1c6
f637681
af4b90c
 
6160f84
ea19f03
6e09d82
 
 
 
 
6160f84
af4b90c
7a47c88
 
 
 
af4b90c
7a47c88
af4b90c
7a47c88
af4b90c
f637681
45bb8a5
449983f
dfabd70
af4b90c
f0e35ad
dfabd70
 
04f10a7
ea19f03
00825cb
 
 
 
449983f
00825cb
04f10a7
 
 
 
 
 
83a6565
 
 
 
 
ea19f03
 
04f10a7
ea19f03
 
 
04f10a7
ea19f03
00825cb
dfabd70
 
83a6565
00825cb
ea19f03
00825cb
dfabd70
00825cb
 
dfabd70
00825cb
dfabd70
ea19f03
00825cb
 
 
449983f
2c1bfb4
 
 
 
 
 
449983f
6e09d82
2c1bfb4
449983f
b6148e0
ab9c8b0
 
36f3034
67f8e33
ab9c8b0
36f3034
04f10a7
36f3034
d0f6704
 
 
 
 
 
 
45bb8a5
36df00a
 
 
 
45bb8a5
801e1c6
36df00a
 
f637681
801e1c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36df00a
801e1c6
f637681
36df00a
45bb8a5
36df00a
accd0d7
801e1c6
449983f
6e09d82
 
36f3034
6e09d82
 
 
 
 
d0f6704
 
 
 
 
 
36df00a
45bb8a5
36df00a
6e09d82
 
 
 
f8ab51b
6e09d82
 
 
f8ab51b
6e09d82
 
f8ab51b
6e09d82
 
f8ab51b
6e09d82
 
 
 
 
 
 
 
 
36df00a
 
 
 
 
 
 
6e09d82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36df00a
6e09d82
 
36df00a
 
 
 
 
 
 
 
6e09d82
36df00a
6e09d82
 
16acf43
6e09d82
 
 
 
 
 
 
 
36df00a
3ac8646
 
 
 
 
 
 
 
 
 
6e09d82
36df00a
3ac8646
 
36df00a
3ac8646
36df00a
 
 
 
 
 
 
 
 
3ac8646
36df00a
 
3ac8646
 
 
 
 
36df00a
3ac8646
 
 
 
36df00a
 
3ac8646
 
6e09d82
3ac8646
6e09d82
 
 
 
 
 
 
 
 
3ac8646
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
import streamlit as st
import pandas as pd
import plotly.express as px
import matplotlib.pyplot as plt
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity

# Page configuration
st.set_page_config(page_title="Customer Insights App", page_icon=":bar_chart:")

# Load CSV files
df = pd.read_csv("df_clean.csv")
nombres_proveedores = pd.read_csv("nombres_proveedores.csv", sep=';')
euros_proveedor = pd.read_csv("euros_proveedor.csv", sep=',')
ventas_clientes = pd.read_csv("ventas_clientes.csv", sep=',')

# Ensure customer codes are strings
df['CLIENTE'] = df['CLIENTE'].astype(str)
nombres_proveedores['codigo'] = nombres_proveedores['codigo'].astype(str)
euros_proveedor['CLIENTE'] = euros_proveedor['CLIENTE'].astype(str)
fieles_df = pd.read_csv("clientes_relevantes.csv")
# Cargo csv del histórico de cestas
cestas = pd.read_csv("cestas.csv")
# Cargo csv de productos y descripcion
productos = pd.read_csv("productos.csv")

# Convert all columns except 'CLIENTE' to float in euros_proveedor
for col in euros_proveedor.columns:
    if col != 'CLIENTE':
        euros_proveedor[col] = pd.to_numeric(euros_proveedor[col], errors='coerce')

# Check for NaN values after conversion
if euros_proveedor.isna().any().any():
    st.warning("Some values in euros_proveedor couldn't be converted to numbers. Please review the input data.")

# Ignore the last two columns of df
df = df.iloc[:, :-2]

# Function to get supplier name
def get_supplier_name(code):
    code = str(code)  # Ensure code is a string
    name = nombres_proveedores[nombres_proveedores['codigo'] == code]['nombre'].values
    return name[0] if len(name) > 0 else code

# Function to create radar chart with square root transformation
def radar_chart(categories, values, amounts, title):
    N = len(categories)
    angles = [n / float(N) * 2 * np.pi for n in range(N)]
    angles += angles[:1]
    
    fig, ax = plt.subplots(figsize=(12, 12), subplot_kw=dict(projection='polar'))
    
    # Apply square root transformation
    sqrt_values = np.sqrt(values)
    sqrt_amounts = np.sqrt(amounts)
    
    max_sqrt_value = max(sqrt_values)
    normalized_values = [v / max_sqrt_value for v in sqrt_values]
    
    # Adjust scaling for spend values
    max_sqrt_amount = max(sqrt_amounts)
    scaling_factor = 0.7  # Adjust this value to control how much the spend values are scaled up
    normalized_amounts = [min((a / max_sqrt_amount) * scaling_factor, 1.0) for a in sqrt_amounts]
    
    normalized_values += normalized_values[:1]
    ax.plot(angles, normalized_values, 'o-', linewidth=2, color='#FF69B4', label='% Units (sqrt)')
    ax.fill(angles, normalized_values, alpha=0.25, color='#FF69B4')
    
    normalized_amounts += normalized_amounts[:1]
    ax.plot(angles, normalized_amounts, 'o-', linewidth=2, color='#4B0082', label='% Spend (sqrt)')
    ax.fill(angles, normalized_amounts, alpha=0.25, color='#4B0082')
    
    ax.set_xticks(angles[:-1])
    ax.set_xticklabels(categories, size=8, wrap=True)
    ax.set_ylim(0, 1)
    
    circles = np.linspace(0, 1, 5)
    for circle in circles:
        ax.plot(angles, [circle]*len(angles), '--', color='gray', alpha=0.3, linewidth=0.5)
    
    ax.set_yticklabels([])
    ax.spines['polar'].set_visible(False)
    
    plt.title(title, size=16, y=1.1)
    plt.legend(loc='upper right', bbox_to_anchor=(1.3, 1.1))
    
    return fig

# Main page design
st.title("Welcome to Customer Insights App")
st.markdown("""
    This app helps businesses analyze customer behaviors and provide personalized recommendations based on purchase history. 
    Use the tools below to dive deeper into your customer data.
""")

# Navigation menu
page = st.selectbox("Select the tool you want to use", ["", "Customer Analysis", "Articles Recommendations"])

# Home Page
if page == "":
    st.markdown("## Welcome to the Customer Insights App")
    st.write("Use the dropdown menu to navigate between the different sections.")

# Customer Analysis Page
elif page == "Customer Analysis":
    st.title("Customer Analysis")
    st.markdown("Use the tools below to explore your customer data.")

    partial_code = st.text_input("Enter part of Customer Code (or leave empty to see all)")
    if partial_code:
        filtered_customers = df[df['CLIENTE'].str.contains(partial_code)]
    else:
        filtered_customers = df
    customer_list = filtered_customers['CLIENTE'].unique()
    customer_code = st.selectbox("Select Customer Code", customer_list)

    if st.button("Calcular"):
        if customer_code:
            customer_data = df[df["CLIENTE"] == str(customer_code)]
            customer_euros = euros_proveedor[euros_proveedor["CLIENTE"] == str(customer_code)]

            # Check if customer data exists
            if not customer_data.empty and not customer_euros.empty:
                st.write(f"### Analysis for Customer {customer_code}")

                # **Step 1: Find Customer's Cluster**
                customer_clusters = pd.read_csv('predicts/customer_clusters.csv')
                cluster = customer_clusters[customer_clusters['cliente_id'] == customer_code]['cluster_id'].values[0]
                st.write(f"Customer {customer_code} belongs to cluster {cluster}")

                # **Step 2: Load the Corresponding Model**
                model_path = f'models/modelo_cluster_{cluster}.txt'
                gbm = lgb.Booster(model_file=model_path)
                st.write(f"Loaded model for cluster {cluster}")

                # **Step 3: Load X_predict for that cluster and extract customer-specific data**
                X_predict_cluster = pd.read_csv(f'predicts/X_predict_cluster_{cluster}.csv')
                X_cliente = X_predict_cluster[X_predict_cluster['cliente_id'] == customer_code]

                if not X_cliente.empty:
                    # **Step 4: Make Prediction for the selected customer**
                    y_pred = gbm.predict(X_cliente.drop(columns=['cliente_id']), num_iteration=gbm.best_iteration)
                    st.write(f"Predicted sales for Customer {customer_code}: {y_pred[0]:.2f}")

                    # **Step 5: Merge with actual data from df_agg_2024**
                    df_agg_2024 = pd.read_csv('predicts/df_agg_2024.csv')
                    actual_sales = df_agg_2024[(df_agg_2024['cliente_id'] == customer_code) & (df_agg_2024['marca_id_encoded'].isin(X_cliente['marca_id_encoded']))]
                    if not actual_sales.empty:
                        merged_data = pd.merge(
                            pd.DataFrame({'cliente_id': [customer_code], 'ventas_predichas': y_pred}),
                            actual_sales[['cliente_id', 'marca_id_encoded', 'precio_total']],
                            on='cliente_id',
                            how='left'
                        )
                        merged_data.rename(columns={'precio_total': 'ventas_reales'}, inplace=True)

                        # Calculate metrics (MAE, MAPE, RMSE, SMAPE)
                        mae = mean_absolute_error(merged_data['ventas_reales'], merged_data['ventas_predichas'])
                        mape = np.mean(np.abs((merged_data['ventas_reales'] - merged_data['ventas_predichas']) / merged_data['ventas_reales'])) * 100
                        rmse = np.sqrt(mean_squared_error(merged_data['ventas_reales'], merged_data['ventas_predichas']))
                        smape_value = smape(merged_data['ventas_reales'], merged_data['ventas_predichas'])

                        st.write(f"MAE: {mae:.2f}")
                        st.write(f"MAPE: {mape:.2f}%")
                        st.write(f"RMSE: {rmse:.2f}")
                        st.write(f"SMAPE: {smape_value:.2f}%")

                        # **Step 6: Analysis of results (show insights if the customer is performing well or not)**
                        if mae < threshold_good:
                            st.success(f"Customer {customer_code} is performing well based on the predictions.")
                        else:
                            st.warning(f"Customer {customer_code} is not performing well based on the predictions.")
                    else:
                        st.warning(f"No actual sales data found for customer {customer_code} in df_agg_2024.")

                    # **Show the radar chart**
                    all_manufacturers = customer_data.iloc[:, 1:].T  # Exclude CLIENTE column
                    all_manufacturers.index = all_manufacturers.index.astype(str)

                    sales_data = customer_euros.iloc[:, 1:].T  # Exclude CLIENTE column
                    sales_data.index = sales_data.index.astype(str)

                    sales_data_filtered = sales_data.drop(index='CLIENTE', errors='ignore')
                    sales_data_filtered = sales_data_filtered.apply(pd.to_numeric, errors='coerce')

                    top_units = all_manufacturers.sort_values(by=all_manufacturers.columns[0], ascending=False).head(10)
                    top_sales = sales_data_filtered.sort_values(by=sales_data_filtered.columns[0], ascending=False).head(10)
                    combined_top = pd.concat([top_units, top_sales]).index.unique()[:20]
                    combined_top = [m for m in combined_top if m in all_manufacturers.index and m in sales_data_filtered.index]

                    combined_data = pd.DataFrame({
                        'units': all_manufacturers.loc[combined_top, all_manufacturers.columns[0]],
                        'sales': sales_data_filtered.loc[combined_top, sales_data_filtered.columns[0]]
                    }).fillna(0)

                    combined_data_sorted = combined_data.sort_values(by=['units', 'sales'], ascending=False)
                    non_zero_manufacturers = combined_data_sorted[combined_data_sorted['units'] > 0]

                    if len(non_zero_manufacturers) < 3:
                        zero_manufacturers = combined_data_sorted[combined_data_sorted['units'] == 0].head(3 - len(non_zero_manufacturers))
                        manufacturers_to_show = pd.concat([non_zero_manufacturers, zero_manufacturers])
                    else:
                        manufacturers_to_show = non_zero_manufacturers

                    values = manufacturers_to_show['units'].tolist()
                    amounts = manufacturers_to_show['sales'].tolist()
                    manufacturers = [get_supplier_name(m) for m in manufacturers_to_show.index]

                    st.write(f"### Results for top {len(manufacturers)} manufacturers:")
                    for manufacturer, value, amount in zip(manufacturers, values, amounts):
                        st.write(f"{manufacturer} = {value:.2f}% of units, €{amount:.2f} total sales")

                    if manufacturers:
                        fig = radar_chart(manufacturers, values, amounts, f'Radar Chart for Top {len(manufacturers)} Manufacturers of Customer {customer_code}')
                        st.pyplot(fig)
                    else:
                        st.warning("No data available to create the radar chart.")

                    # **Show sales over the years graph**
                    sales_columns = ['VENTA_2021', 'VENTA_2022', 'VENTA_2023']
                    if all(col in ventas_clientes.columns for col in sales_columns):
                        years = ['2021', '2022', '2023']
                        customer_sales = ventas_clientes[ventas_clientes['codigo_cliente'] == customer_code][sales_columns].values[0]

                        fig_sales = px.line(x=years, y=customer_sales, markers=True, title=f'Sales Over the Years for Customer {customer_code}')
                        fig_sales.update_layout(xaxis_title="Year", yaxis_title="Sales")
                        st.plotly_chart(fig_sales)
                    else:
                        st.warning("Sales data for 2021-2023 not available.")
                else:
                    st.warning(f"No prediction data found for customer {customer_code}.")
            else:
                st.warning(f"No data found for customer {customer_code}. Please check the code.")
        else:
            st.warning("Please select a customer.")


# Customer Recommendations Page
elif page == "Articles Recommendations":
    st.title("Articles Recommendations")

    st.markdown("""
        Get tailored recommendations for your customers based on their basket.
    """)

    # Campo input para cliente
    partial_code = st.text_input("Enter part of Customer Code for Recommendations (or leave empty to see all)")
    if partial_code:
        filtered_customers = df[df['CLIENTE'].str.contains(partial_code)]
    else:
        filtered_customers = df
    customer_list = filtered_customers['CLIENTE'].unique()
    customer_code = st.selectbox("Select Customer Code for Recommendations", [""] + list(customer_list))

    # Definición de la función recomienda
    def recomienda(new_basket):
        # Calcular la matriz TF-IDF
        tfidf = TfidfVectorizer()
        tfidf_matrix = tfidf.fit_transform(cestas['Cestas'])

        # Convertir la nueva cesta en formato TF-IDF
        new_basket_str = ' '.join(new_basket)
        new_basket_tfidf = tfidf.transform([new_basket_str])

        # Comparar la nueva cesta con las anteriores
        similarities = cosine_similarity(new_basket_tfidf, tfidf_matrix)

        # Obtener los índices de las cestas más similares
        similar_indices = similarities.argsort()[0][-3:]  # Las 3 más similares

        # Crear un diccionario para contar las recomendaciones
        recommendations_count = {}
        total_similarity = 0

        # Recomendar productos de cestas similares
        for idx in similar_indices:
            sim_score = similarities[0][idx]
            total_similarity += sim_score
            products = cestas.iloc[idx]['Cestas'].split()

            for product in products:
                if product.strip() not in new_basket:  # Evitar recomendar lo que ya está en la cesta
                    if product.strip() in recommendations_count:
                        recommendations_count[product.strip()] += sim_score
                    else:
                        recommendations_count[product.strip()] = sim_score

        # Calcular la probabilidad relativa de cada producto recomendado
        recommendations_with_prob = []
        if total_similarity > 0:  # Verificar que total_similarity no sea cero
            recommendations_with_prob = [(product, score / total_similarity) for product, score in recommendations_count.items()]
        else:
            print("No se encontraron similitudes suficientes para calcular probabilidades.")

        recommendations_with_prob.sort(key=lambda x: x[1], reverse=True)  # Ordenar por puntuación

        # Crear un nuevo DataFrame para almacenar las recomendaciones con descripciones y probabilidades
        recommendations_df = pd.DataFrame(columns=['ARTICULO', 'DESCRIPCION', 'PROBABILIDAD'])

        # Agregar las recomendaciones al DataFrame usando pd.concat
        for product, prob in recommendations_with_prob:
            # Buscar la descripción en el DataFrame de productos
            description = productos.loc[productos['ARTICULO'] == product, 'DESCRIPCION']
            if not description.empty:
                # Crear un nuevo DataFrame temporal para la recomendación
                temp_df = pd.DataFrame({
                    'ARTICULO': [product],
                    'DESCRIPCION': [description.values[0]],  # Obtener el primer valor encontrado
                    'PROBABILIDAD': [prob]
                })
                # Concatenar el DataFrame temporal al DataFrame de recomendaciones
                recommendations_df = pd.concat([recommendations_df, temp_df], ignore_index=True)

        return recommendations_df

    # Comprobar si el cliente está en el CSV de fieles
    is_fiel = customer_code in fieles_df['Cliente'].astype(str).values

    if customer_code:
        if is_fiel:
            st.write(f"### Customer {customer_code} is a loyal customer.")
            option = st.selectbox("Select Recommendation Type", ["Select an option", "By Purchase History", "By Current Basket"])

            if option == "By Purchase History":
                st.warning("Option not available... aún")
            elif option == "By Current Basket":
                st.write("Select the items and assign quantities for the basket:")

                # Mostrar lista de artículos disponibles
                available_articles = productos['ARTICULO'].unique()
                selected_articles = st.multiselect("Select Articles", available_articles)

                # Crear inputs para ingresar las cantidades de cada artículo seleccionado
                quantities = {}
                for article in selected_articles:
                    quantities[article] = st.number_input(f"Quantity for {article}", min_value=0, step=1)

                if st.button("Calcular"):  # Añadimos el botón "Calcular"
                    # Crear una lista de artículos basada en la selección
                    new_basket = [f"{article} x{quantities[article]}" for article in selected_articles if quantities[article] > 0]

                    if new_basket:
                        # Procesar la lista para recomendar
                        recommendations_df = recomienda(new_basket)

                        if not recommendations_df.empty:
                            st.write("### Recommendations based on the current basket:")
                            st.dataframe(recommendations_df)
                        else:
                            st.warning("No recommendations found for the provided basket.")
                    else:
                        st.warning("Please select at least one article and set its quantity.")
        else:
            st.write(f"### Customer {customer_code} is not a loyal customer.")
            st.write("Select items and assign quantities for the basket:")

            # Mostrar lista de artículos disponibles
            available_articles = productos['ARTICULO'].unique()
            selected_articles = st.multiselect("Select Articles", available_articles)

            # Crear inputs para ingresar las cantidades de cada artículo seleccionado
            quantities = {}
            for article in selected_articles:
                quantities[article] = st.number_input(f"Quantity for {article}", min_value=0, step=1)

            if st.button("Calcular"):  # Añadimos el botón "Calcular"
                # Crear una lista de artículos basada en la selección
                new_basket = [f"{article} x{quantities[article]}" for article in selected_articles if quantities[article] > 0]

                if new_basket:
                    # Procesar la lista para recomendar
                    recommendations_df = recomienda(new_basket)

                    if not recommendations_df.empty:
                        st.write("### Recommendations based on the current basket:")
                        st.dataframe(recommendations_df)
                    else:
                        st.warning("No recommendations found for the provided basket.")
                else:
                    st.warning("Please select at least one article and set its quantity.")