Spaces:
Sleeping
Sleeping
File size: 19,343 Bytes
89e696a 36f3034 00825cb 6e09d82 89e696a 449983f 2c1bfb4 449983f dfabd70 eca3864 ea19f03 801e1c6 f637681 af4b90c 6160f84 ea19f03 6e09d82 6160f84 af4b90c 7a47c88 af4b90c 7a47c88 af4b90c 7a47c88 af4b90c f637681 45bb8a5 449983f dfabd70 af4b90c f0e35ad dfabd70 04f10a7 ea19f03 00825cb 449983f 00825cb 04f10a7 83a6565 ea19f03 04f10a7 ea19f03 04f10a7 ea19f03 00825cb dfabd70 83a6565 00825cb ea19f03 00825cb dfabd70 00825cb dfabd70 00825cb dfabd70 ea19f03 00825cb 449983f 2c1bfb4 449983f 6e09d82 2c1bfb4 449983f b6148e0 ab9c8b0 36f3034 67f8e33 ab9c8b0 36f3034 04f10a7 36f3034 d0f6704 45bb8a5 36df00a 45bb8a5 801e1c6 36df00a f637681 801e1c6 36df00a 801e1c6 f637681 36df00a 45bb8a5 36df00a accd0d7 801e1c6 449983f 6e09d82 36f3034 6e09d82 d0f6704 36df00a 45bb8a5 36df00a 6e09d82 f8ab51b 6e09d82 f8ab51b 6e09d82 f8ab51b 6e09d82 f8ab51b 6e09d82 36df00a 6e09d82 36df00a 6e09d82 36df00a 6e09d82 36df00a 6e09d82 16acf43 6e09d82 36df00a 3ac8646 6e09d82 36df00a 3ac8646 36df00a 3ac8646 36df00a 3ac8646 36df00a 3ac8646 36df00a 3ac8646 36df00a 3ac8646 6e09d82 3ac8646 6e09d82 3ac8646 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 |
import streamlit as st
import pandas as pd
import plotly.express as px
import matplotlib.pyplot as plt
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
# Page configuration
st.set_page_config(page_title="Customer Insights App", page_icon=":bar_chart:")
# Load CSV files
df = pd.read_csv("df_clean.csv")
nombres_proveedores = pd.read_csv("nombres_proveedores.csv", sep=';')
euros_proveedor = pd.read_csv("euros_proveedor.csv", sep=',')
ventas_clientes = pd.read_csv("ventas_clientes.csv", sep=',')
# Ensure customer codes are strings
df['CLIENTE'] = df['CLIENTE'].astype(str)
nombres_proveedores['codigo'] = nombres_proveedores['codigo'].astype(str)
euros_proveedor['CLIENTE'] = euros_proveedor['CLIENTE'].astype(str)
fieles_df = pd.read_csv("clientes_relevantes.csv")
# Cargo csv del histórico de cestas
cestas = pd.read_csv("cestas.csv")
# Cargo csv de productos y descripcion
productos = pd.read_csv("productos.csv")
# Convert all columns except 'CLIENTE' to float in euros_proveedor
for col in euros_proveedor.columns:
if col != 'CLIENTE':
euros_proveedor[col] = pd.to_numeric(euros_proveedor[col], errors='coerce')
# Check for NaN values after conversion
if euros_proveedor.isna().any().any():
st.warning("Some values in euros_proveedor couldn't be converted to numbers. Please review the input data.")
# Ignore the last two columns of df
df = df.iloc[:, :-2]
# Function to get supplier name
def get_supplier_name(code):
code = str(code) # Ensure code is a string
name = nombres_proveedores[nombres_proveedores['codigo'] == code]['nombre'].values
return name[0] if len(name) > 0 else code
# Function to create radar chart with square root transformation
def radar_chart(categories, values, amounts, title):
N = len(categories)
angles = [n / float(N) * 2 * np.pi for n in range(N)]
angles += angles[:1]
fig, ax = plt.subplots(figsize=(12, 12), subplot_kw=dict(projection='polar'))
# Apply square root transformation
sqrt_values = np.sqrt(values)
sqrt_amounts = np.sqrt(amounts)
max_sqrt_value = max(sqrt_values)
normalized_values = [v / max_sqrt_value for v in sqrt_values]
# Adjust scaling for spend values
max_sqrt_amount = max(sqrt_amounts)
scaling_factor = 0.7 # Adjust this value to control how much the spend values are scaled up
normalized_amounts = [min((a / max_sqrt_amount) * scaling_factor, 1.0) for a in sqrt_amounts]
normalized_values += normalized_values[:1]
ax.plot(angles, normalized_values, 'o-', linewidth=2, color='#FF69B4', label='% Units (sqrt)')
ax.fill(angles, normalized_values, alpha=0.25, color='#FF69B4')
normalized_amounts += normalized_amounts[:1]
ax.plot(angles, normalized_amounts, 'o-', linewidth=2, color='#4B0082', label='% Spend (sqrt)')
ax.fill(angles, normalized_amounts, alpha=0.25, color='#4B0082')
ax.set_xticks(angles[:-1])
ax.set_xticklabels(categories, size=8, wrap=True)
ax.set_ylim(0, 1)
circles = np.linspace(0, 1, 5)
for circle in circles:
ax.plot(angles, [circle]*len(angles), '--', color='gray', alpha=0.3, linewidth=0.5)
ax.set_yticklabels([])
ax.spines['polar'].set_visible(False)
plt.title(title, size=16, y=1.1)
plt.legend(loc='upper right', bbox_to_anchor=(1.3, 1.1))
return fig
# Main page design
st.title("Welcome to Customer Insights App")
st.markdown("""
This app helps businesses analyze customer behaviors and provide personalized recommendations based on purchase history.
Use the tools below to dive deeper into your customer data.
""")
# Navigation menu
page = st.selectbox("Select the tool you want to use", ["", "Customer Analysis", "Articles Recommendations"])
# Home Page
if page == "":
st.markdown("## Welcome to the Customer Insights App")
st.write("Use the dropdown menu to navigate between the different sections.")
# Customer Analysis Page
elif page == "Customer Analysis":
st.title("Customer Analysis")
st.markdown("Use the tools below to explore your customer data.")
partial_code = st.text_input("Enter part of Customer Code (or leave empty to see all)")
if partial_code:
filtered_customers = df[df['CLIENTE'].str.contains(partial_code)]
else:
filtered_customers = df
customer_list = filtered_customers['CLIENTE'].unique()
customer_code = st.selectbox("Select Customer Code", customer_list)
if st.button("Calcular"):
if customer_code:
customer_data = df[df["CLIENTE"] == str(customer_code)]
customer_euros = euros_proveedor[euros_proveedor["CLIENTE"] == str(customer_code)]
# Check if customer data exists
if not customer_data.empty and not customer_euros.empty:
st.write(f"### Analysis for Customer {customer_code}")
# **Step 1: Find Customer's Cluster**
customer_clusters = pd.read_csv('predicts/customer_clusters.csv')
cluster = customer_clusters[customer_clusters['cliente_id'] == customer_code]['cluster_id'].values[0]
st.write(f"Customer {customer_code} belongs to cluster {cluster}")
# **Step 2: Load the Corresponding Model**
model_path = f'models/modelo_cluster_{cluster}.txt'
gbm = lgb.Booster(model_file=model_path)
st.write(f"Loaded model for cluster {cluster}")
# **Step 3: Load X_predict for that cluster and extract customer-specific data**
X_predict_cluster = pd.read_csv(f'predicts/X_predict_cluster_{cluster}.csv')
X_cliente = X_predict_cluster[X_predict_cluster['cliente_id'] == customer_code]
if not X_cliente.empty:
# **Step 4: Make Prediction for the selected customer**
y_pred = gbm.predict(X_cliente.drop(columns=['cliente_id']), num_iteration=gbm.best_iteration)
st.write(f"Predicted sales for Customer {customer_code}: {y_pred[0]:.2f}")
# **Step 5: Merge with actual data from df_agg_2024**
df_agg_2024 = pd.read_csv('predicts/df_agg_2024.csv')
actual_sales = df_agg_2024[(df_agg_2024['cliente_id'] == customer_code) & (df_agg_2024['marca_id_encoded'].isin(X_cliente['marca_id_encoded']))]
if not actual_sales.empty:
merged_data = pd.merge(
pd.DataFrame({'cliente_id': [customer_code], 'ventas_predichas': y_pred}),
actual_sales[['cliente_id', 'marca_id_encoded', 'precio_total']],
on='cliente_id',
how='left'
)
merged_data.rename(columns={'precio_total': 'ventas_reales'}, inplace=True)
# Calculate metrics (MAE, MAPE, RMSE, SMAPE)
mae = mean_absolute_error(merged_data['ventas_reales'], merged_data['ventas_predichas'])
mape = np.mean(np.abs((merged_data['ventas_reales'] - merged_data['ventas_predichas']) / merged_data['ventas_reales'])) * 100
rmse = np.sqrt(mean_squared_error(merged_data['ventas_reales'], merged_data['ventas_predichas']))
smape_value = smape(merged_data['ventas_reales'], merged_data['ventas_predichas'])
st.write(f"MAE: {mae:.2f}")
st.write(f"MAPE: {mape:.2f}%")
st.write(f"RMSE: {rmse:.2f}")
st.write(f"SMAPE: {smape_value:.2f}%")
# **Step 6: Analysis of results (show insights if the customer is performing well or not)**
if mae < threshold_good:
st.success(f"Customer {customer_code} is performing well based on the predictions.")
else:
st.warning(f"Customer {customer_code} is not performing well based on the predictions.")
else:
st.warning(f"No actual sales data found for customer {customer_code} in df_agg_2024.")
# **Show the radar chart**
all_manufacturers = customer_data.iloc[:, 1:].T # Exclude CLIENTE column
all_manufacturers.index = all_manufacturers.index.astype(str)
sales_data = customer_euros.iloc[:, 1:].T # Exclude CLIENTE column
sales_data.index = sales_data.index.astype(str)
sales_data_filtered = sales_data.drop(index='CLIENTE', errors='ignore')
sales_data_filtered = sales_data_filtered.apply(pd.to_numeric, errors='coerce')
top_units = all_manufacturers.sort_values(by=all_manufacturers.columns[0], ascending=False).head(10)
top_sales = sales_data_filtered.sort_values(by=sales_data_filtered.columns[0], ascending=False).head(10)
combined_top = pd.concat([top_units, top_sales]).index.unique()[:20]
combined_top = [m for m in combined_top if m in all_manufacturers.index and m in sales_data_filtered.index]
combined_data = pd.DataFrame({
'units': all_manufacturers.loc[combined_top, all_manufacturers.columns[0]],
'sales': sales_data_filtered.loc[combined_top, sales_data_filtered.columns[0]]
}).fillna(0)
combined_data_sorted = combined_data.sort_values(by=['units', 'sales'], ascending=False)
non_zero_manufacturers = combined_data_sorted[combined_data_sorted['units'] > 0]
if len(non_zero_manufacturers) < 3:
zero_manufacturers = combined_data_sorted[combined_data_sorted['units'] == 0].head(3 - len(non_zero_manufacturers))
manufacturers_to_show = pd.concat([non_zero_manufacturers, zero_manufacturers])
else:
manufacturers_to_show = non_zero_manufacturers
values = manufacturers_to_show['units'].tolist()
amounts = manufacturers_to_show['sales'].tolist()
manufacturers = [get_supplier_name(m) for m in manufacturers_to_show.index]
st.write(f"### Results for top {len(manufacturers)} manufacturers:")
for manufacturer, value, amount in zip(manufacturers, values, amounts):
st.write(f"{manufacturer} = {value:.2f}% of units, €{amount:.2f} total sales")
if manufacturers:
fig = radar_chart(manufacturers, values, amounts, f'Radar Chart for Top {len(manufacturers)} Manufacturers of Customer {customer_code}')
st.pyplot(fig)
else:
st.warning("No data available to create the radar chart.")
# **Show sales over the years graph**
sales_columns = ['VENTA_2021', 'VENTA_2022', 'VENTA_2023']
if all(col in ventas_clientes.columns for col in sales_columns):
years = ['2021', '2022', '2023']
customer_sales = ventas_clientes[ventas_clientes['codigo_cliente'] == customer_code][sales_columns].values[0]
fig_sales = px.line(x=years, y=customer_sales, markers=True, title=f'Sales Over the Years for Customer {customer_code}')
fig_sales.update_layout(xaxis_title="Year", yaxis_title="Sales")
st.plotly_chart(fig_sales)
else:
st.warning("Sales data for 2021-2023 not available.")
else:
st.warning(f"No prediction data found for customer {customer_code}.")
else:
st.warning(f"No data found for customer {customer_code}. Please check the code.")
else:
st.warning("Please select a customer.")
# Customer Recommendations Page
elif page == "Articles Recommendations":
st.title("Articles Recommendations")
st.markdown("""
Get tailored recommendations for your customers based on their basket.
""")
# Campo input para cliente
partial_code = st.text_input("Enter part of Customer Code for Recommendations (or leave empty to see all)")
if partial_code:
filtered_customers = df[df['CLIENTE'].str.contains(partial_code)]
else:
filtered_customers = df
customer_list = filtered_customers['CLIENTE'].unique()
customer_code = st.selectbox("Select Customer Code for Recommendations", [""] + list(customer_list))
# Definición de la función recomienda
def recomienda(new_basket):
# Calcular la matriz TF-IDF
tfidf = TfidfVectorizer()
tfidf_matrix = tfidf.fit_transform(cestas['Cestas'])
# Convertir la nueva cesta en formato TF-IDF
new_basket_str = ' '.join(new_basket)
new_basket_tfidf = tfidf.transform([new_basket_str])
# Comparar la nueva cesta con las anteriores
similarities = cosine_similarity(new_basket_tfidf, tfidf_matrix)
# Obtener los índices de las cestas más similares
similar_indices = similarities.argsort()[0][-3:] # Las 3 más similares
# Crear un diccionario para contar las recomendaciones
recommendations_count = {}
total_similarity = 0
# Recomendar productos de cestas similares
for idx in similar_indices:
sim_score = similarities[0][idx]
total_similarity += sim_score
products = cestas.iloc[idx]['Cestas'].split()
for product in products:
if product.strip() not in new_basket: # Evitar recomendar lo que ya está en la cesta
if product.strip() in recommendations_count:
recommendations_count[product.strip()] += sim_score
else:
recommendations_count[product.strip()] = sim_score
# Calcular la probabilidad relativa de cada producto recomendado
recommendations_with_prob = []
if total_similarity > 0: # Verificar que total_similarity no sea cero
recommendations_with_prob = [(product, score / total_similarity) for product, score in recommendations_count.items()]
else:
print("No se encontraron similitudes suficientes para calcular probabilidades.")
recommendations_with_prob.sort(key=lambda x: x[1], reverse=True) # Ordenar por puntuación
# Crear un nuevo DataFrame para almacenar las recomendaciones con descripciones y probabilidades
recommendations_df = pd.DataFrame(columns=['ARTICULO', 'DESCRIPCION', 'PROBABILIDAD'])
# Agregar las recomendaciones al DataFrame usando pd.concat
for product, prob in recommendations_with_prob:
# Buscar la descripción en el DataFrame de productos
description = productos.loc[productos['ARTICULO'] == product, 'DESCRIPCION']
if not description.empty:
# Crear un nuevo DataFrame temporal para la recomendación
temp_df = pd.DataFrame({
'ARTICULO': [product],
'DESCRIPCION': [description.values[0]], # Obtener el primer valor encontrado
'PROBABILIDAD': [prob]
})
# Concatenar el DataFrame temporal al DataFrame de recomendaciones
recommendations_df = pd.concat([recommendations_df, temp_df], ignore_index=True)
return recommendations_df
# Comprobar si el cliente está en el CSV de fieles
is_fiel = customer_code in fieles_df['Cliente'].astype(str).values
if customer_code:
if is_fiel:
st.write(f"### Customer {customer_code} is a loyal customer.")
option = st.selectbox("Select Recommendation Type", ["Select an option", "By Purchase History", "By Current Basket"])
if option == "By Purchase History":
st.warning("Option not available... aún")
elif option == "By Current Basket":
st.write("Select the items and assign quantities for the basket:")
# Mostrar lista de artículos disponibles
available_articles = productos['ARTICULO'].unique()
selected_articles = st.multiselect("Select Articles", available_articles)
# Crear inputs para ingresar las cantidades de cada artículo seleccionado
quantities = {}
for article in selected_articles:
quantities[article] = st.number_input(f"Quantity for {article}", min_value=0, step=1)
if st.button("Calcular"): # Añadimos el botón "Calcular"
# Crear una lista de artículos basada en la selección
new_basket = [f"{article} x{quantities[article]}" for article in selected_articles if quantities[article] > 0]
if new_basket:
# Procesar la lista para recomendar
recommendations_df = recomienda(new_basket)
if not recommendations_df.empty:
st.write("### Recommendations based on the current basket:")
st.dataframe(recommendations_df)
else:
st.warning("No recommendations found for the provided basket.")
else:
st.warning("Please select at least one article and set its quantity.")
else:
st.write(f"### Customer {customer_code} is not a loyal customer.")
st.write("Select items and assign quantities for the basket:")
# Mostrar lista de artículos disponibles
available_articles = productos['ARTICULO'].unique()
selected_articles = st.multiselect("Select Articles", available_articles)
# Crear inputs para ingresar las cantidades de cada artículo seleccionado
quantities = {}
for article in selected_articles:
quantities[article] = st.number_input(f"Quantity for {article}", min_value=0, step=1)
if st.button("Calcular"): # Añadimos el botón "Calcular"
# Crear una lista de artículos basada en la selección
new_basket = [f"{article} x{quantities[article]}" for article in selected_articles if quantities[article] > 0]
if new_basket:
# Procesar la lista para recomendar
recommendations_df = recomienda(new_basket)
if not recommendations_df.empty:
st.write("### Recommendations based on the current basket:")
st.dataframe(recommendations_df)
else:
st.warning("No recommendations found for the provided basket.")
else:
st.warning("Please select at least one article and set its quantity.") |