import gradio as gr import numpy as np from math import ceil from huggingface_hub import from_pretrained_keras model = from_pretrained_keras("GIanlucaRub/doubleResFinal") # model = from_pretrained_keras("GIanlucaRub/autoencoder_model_d_0") def double_res(input_image): input_height = input_image.shape[0] input_width = input_image.shape[1] height = ceil(input_height/128) width = ceil(input_width/128) expanded_input_image = np.zeros((128*height, 128*width, 3), dtype=np.uint8) np.copyto(expanded_input_image[0:input_height, 0:input_width], input_image) output_image = np.zeros((128*height*2, 128*width*2, 3), dtype=np.float32) to_predict = [] for i in range(height): for j in range(width): temp_slice = expanded_input_image[i * 128:(i+1)*128, j*128:(j+1)*128]/255 to_predict.append(temp_slice) # removing inner borders for i in range(height): for j in range(width): if i != 0 and j != 0 and i != height-1 and j != width-1: right_slice = expanded_input_image[i * 128:(i+1)*128, (j+1)*128-64:(j+1)*128+64]/255 to_predict.append(right_slice) left_slice = expanded_input_image[i * 128:(i+1)*128, j*128-64:(j)*128+64]/255 to_predict.append(left_slice) upper_slice = expanded_input_image[( i+1)*128-64:(i+1)*128+64, j*128:(j+1)*128]/255 to_predict.append(upper_slice) lower_slice = expanded_input_image[i * 128-64:i*128+64, j*128:(j+1)*128]/255 to_predict.append(lower_slice) # removing angles lower_right_slice = expanded_input_image[i * 128-64:i*128+64, (j+1)*128-64:(j+1)*128+64]/255 to_predict.append(lower_right_slice) lower_left_slice = expanded_input_image[i * 128-64:i*128+64, j*128-64:j*128+64]/255 to_predict.append(lower_left_slice) # predicting all images at once completed = False n = 16 # n = 1 while not completed: try: print("attempting with "+ str(n)) predicted = model.predict(np.array(to_predict),batch_size = n) completed = True print("completed with "+ str(n)) except: print("attempt with " + str(n) + " failed") n += -1 if n <= 0: n = 1 counter = 0 for i in range(height): for j in range(width): np.copyto(output_image[i*256:(i+1)*256, j * 256:(j+1)*256], predicted[counter]) counter+=1 for i in range(height): for j in range(width): if i != 0 and j != 0 and i != height-1 and j != width-1: right_upsampled_slice = predicted[counter] counter+=1 resized_right_slice = right_upsampled_slice[64:192, 64:192] np.copyto(output_image[i*256+64:(i+1)*256-64, (j+1)*256-64:(j+1)*256+64], resized_right_slice) left_upsampled_slice = predicted[counter] counter+=1 resized_left_slice = left_upsampled_slice[64:192, 64:192] np.copyto(output_image[i*256+64:(i+1)*256-64, j*256-64:j*256+64], resized_left_slice) upper_upsampled_slice = predicted[counter] counter+=1 resized_upper_slice = upper_upsampled_slice[64:192, 64:192] np.copyto(output_image[(i+1)*256-64:(i+1)*256+64, j*256+64:(j+1)*256-64], resized_upper_slice) lower_upsampled_slice = predicted[counter] counter+=1 resized_lower_slice = lower_upsampled_slice[64:192, 64:192] np.copyto(output_image[i*256-64:i*256+64, j*256+64:(j+1)*256-64], resized_lower_slice) lower_right_upsampled_slice = predicted[counter] counter+=1 resized_lower_right_slice = lower_right_upsampled_slice[64:192, 64:192] np.copyto(output_image[i*256-64:i*256+64, (j+1) * 256-64:(j+1)*256+64], resized_lower_right_slice) lower_left_upsampled_slice = predicted[counter] counter+=1 resized_lower_left_slice = lower_left_upsampled_slice[64:192, 64:192] np.copyto( output_image[i*256-64:i*256+64, j*256-64:j*256+64], resized_lower_left_slice) resized_output_image = output_image[0:input_height*2, 0:input_width*2] return resized_output_image demo = gr.Interface( fn=double_res, title="Double picture resolution", description="Upload a picture and get the horizontal and vertical resolution doubled (4x pixels)", allow_flagging="never", inputs=[ gr.inputs.Image(type="numpy") ], outputs=gr.Image(type="numpy")) demo.launch()