import gradio as gr
import pandas as pd
import numpy as np
import os
import time
import re
import json
from auditqa.sample_questions import QUESTIONS
from auditqa.engine.prompts import audience_prompts
from auditqa.reports import files, report_list
from auditqa.doc_process import process_pdf, get_local_qdrant
from langchain.schema import (
HumanMessage,
SystemMessage,
)
from langchain_core.output_parsers import StrOutputParser
from langchain_core.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain_community.llms import HuggingFaceEndpoint
from langchain_community.chat_models.huggingface import ChatHuggingFace
from qdrant_client.http import models as rest
#from qdrant_client import QdrantClient
from dotenv import load_dotenv
import pkg_resources
load_dotenv()
HF_token = os.environ["HF_TOKEN"]
#installed_packages = pkg_resources.working_set
#package_list_ = ""
#for package in installed_packages:
# package_list_ = package_list_ + f"{package.key}=={package.version}\n"
#print(package_list_)
######## Vector Store #######
# process all files and get the vectorstores collections
# vectorestore colection are stored on persistent storage so this needs to be run only once
# hence, comment out line below when creating for first time
vectorstores = process_pdf()
# once the vectore embeddings are created we will qdrant client to access these
#vectorstores = get_local_qdrant()
# -------------------------------------------------------------
# Functions
# -------------------------------------------------------------
def make_html_source(source,i):
"""
takes the text and converts it into html format for display in "source" side tab
"""
meta = source.metadata
# content = source.page_content.split(":",1)[1].strip()
content = source.page_content.strip()
name = meta['filename']
card = f"""
Doc {i} - {meta['filename']} - Page {int(meta['page'])}
{content}
"""
return card
def parse_output_llm_with_sources(output):
# Split the content into a list of text and "[Doc X]" references
content_parts = re.split(r'\[(Doc\s?\d+(?:,\s?Doc\s?\d+)*)\]', output)
parts = []
for part in content_parts:
if part.startswith("Doc"):
subparts = part.split(",")
subparts = [subpart.lower().replace("doc","").strip() for subpart in subparts]
subparts = [f"""{subpart}""" for subpart in subparts]
parts.append("".join(subparts))
else:
parts.append(part)
content_parts = "".join(parts)
return content_parts
def start_chat(query,history):
history = history + [(query,None)]
history = [tuple(x) for x in history]
return (gr.update(interactive = False),gr.update(selected=1),history)
def finish_chat():
return (gr.update(interactive = True,value = ""))
async def chat(query,history,sources,reports,subtype,year):
"""taking a query and a message history, use a pipeline (reformulation, retriever, answering) to yield a tuple of:
(messages in gradio format, messages in langchain format, source documents)"""
print(f">> NEW QUESTION : {query}")
print(f"history:{history}")
#print(f"audience:{audience}")
print(f"sources:{sources}")
print(f"reports:{reports}")
print(f"subtype:{subtype}")
print(f"year:{year}")
docs_html = ""
output_query = ""
##------------------------decide which collection to fetch------------------------------
if len(reports) == 0:
vectorstore = vectorstores["allreports"]
else:
vectorstore = vectorstores["allreports"]
###-------------------------------------Construct Filter------------------------------------
if len(reports) == 0:
print("defining filter for:",sources,":",subtype,":",year)
filter=rest.Filter(
must=[rest.FieldCondition(
key="metadata.source",
match=rest.MatchValue(value=sources)
),
rest.FieldCondition(
key="metadata.subtype",
match=rest.MatchValue(value=subtype)
),
rest.FieldCondition(
key="metadata.year",
match=rest.MatchAny(any=year)
),])
else:
print("defining filter for allreports:",reports)
filter=rest.Filter(
must=[
rest.FieldCondition(
key="metadata.filename",
match=rest.MatchAny(any=reports)
)])
##------------------------------get context----------------------------------------------------
context_retrieved_lst = []
question_lst= [query]
for question in question_lst:
retriever = vectorstore.as_retriever(
search_type="similarity_score_threshold", search_kwargs={"score_threshold": 0.6, "k": 3, "filter":filter})
context_retrieved = retriever.invoke(question)
print(len(context_retrieved))
for doc in context_retrieved:
print(doc.metadata)
def format_docs(docs):
return "\n\n".join(doc.page_content for doc in docs)
context_retrieved_formatted = format_docs(context_retrieved)
context_retrieved_lst.append(context_retrieved_formatted)
##-------------------Prompt---------------------------------------------------------------
SYSTEM_PROMPT = """
You are AuditQ&A, an AI Assistant created by Auditors and Data Scientist. You are given a question and extracted passages of the consolidated/departmental/thematic focus audit reports. Provide a clear and structured answer based on the passages/context provided and the guidelines.
Guidelines:
- If the passages have useful facts or numbers, use them in your answer.
- When you use information from a passage, mention where it came from by using [Doc i] at the end of the sentence. i stands for the number of the document.
- Do not use the sentence 'Doc i says ...' to say where information came from.
- If the same thing is said in more than one document, you can mention all of them like this: [Doc i, Doc j, Doc k]
- Do not just summarize each passage one by one. Group your summaries to highlight the key parts in the explanation.
- If it makes sense, use bullet points and lists to make your answers easier to understand.
- You do not need to use every passage. Only use the ones that help answer the question.
- If the documents do not have the information needed to answer the question, just say you do not have enough information.
"""
USER_PROMPT = """Passages:
{context}
-----------------------
Question: {question} - Explained to audit expert
Answer in english with the passages citations:
""".format(context = context_retrieved_lst, question=query)
messages = [
SystemMessage(content=SYSTEM_PROMPT),
HumanMessage(
content=USER_PROMPT
),]
###-----------------getting inference endpoints------------------------------
# llama-3_1 endpoint = https://howaqfw0lpap12sg.us-east-1.aws.endpoints.huggingface.cloud
# llama-3 endpoint = https://nhe9phsr2zhs0e36.eu-west-1.aws.endpoints.huggingface.cloud
#callbacks = [StreamingStdOutCallbackHandler()]
llm_qa = HuggingFaceEndpoint(
endpoint_url="https://howaqfw0lpap12sg.us-east-1.aws.endpoints.huggingface.cloud",
max_new_tokens=1024,
huggingfacehub_api_token=HF_token,)
# create rag chain
chat_model = ChatHuggingFace(llm=llm_qa)
###-------------------------- get answers ---------------------------------------
answer_lst = []
for question, context in zip(question_lst , context_retrieved_lst):
answer = chat_model.invoke(messages)
answer_lst.append(answer.content)
docs_html = []
for i, d in enumerate(context_retrieved, 1):
docs_html.append(make_html_source(d, i))
docs_html = "".join(docs_html)
previous_answer = history[-1][1]
previous_answer = previous_answer if previous_answer is not None else ""
answer_yet = previous_answer + answer_lst[0]
answer_yet = parse_output_llm_with_sources(answer_yet)
history[-1] = (query,answer_yet)
history = [tuple(x) for x in history]
yield history,docs_html
#process_pdf()
# --------------------------------------------------------------------
# Gradio
# --------------------------------------------------------------------
# Set up Gradio Theme
theme = gr.themes.Base(
primary_hue="blue",
secondary_hue="red",
font=[gr.themes.GoogleFont("Poppins"), "ui-sans-serif", "system-ui", "sans-serif"],
text_size = gr.themes.utils.sizes.text_sm,
)
init_prompt = """
Hello, I am Audit Q&A, a conversational assistant designed to help you understand audit Reports. I will answer your questions by using **Audit reports publishsed by Auditor General Office**.
💡 How to use (tabs on right)
- **Reports**: You can choose to address your question to either specific report or a collection of report like District or Ministry focused reports. \
If you dont select any then the Consolidated report is relied upon to answer your question.
- **Examples**: We have curated some example questions,select a particular question from category of questions.
- **Sources**: This tab will display the relied upon paragraphs from the report, to help you in assessing or fact checking if the answer provided by Audit Q&A assitant is correct or not.
⚠️ For limitations of the tool please check **Disclaimer** tab.
"""
with gr.Blocks(title="Audit Q&A", css= "style.css", theme=theme,elem_id = "main-component") as demo:
#----------------------------------------------------------------------------------------------
# main tab where chat interaction happens
# ---------------------------------------------------------------------------------------------
with gr.Tab("AuditQ&A"):
with gr.Row(elem_id="chatbot-row"):
# chatbot output screen
with gr.Column(scale=2):
chatbot = gr.Chatbot(
value=[(None,init_prompt)],
show_copy_button=True,show_label = False,elem_id="chatbot",layout = "panel",
avatar_images = (None,"data-collection.png"),
)
with gr.Row(elem_id = "input-message"):
textbox=gr.Textbox(placeholder="Ask me anything here!",show_label=False,scale=7,
lines = 1,interactive = True,elem_id="input-textbox")
# second column with playground area for user to select values
with gr.Column(scale=1, variant="panel",elem_id = "right-panel"):
# creating tabs on right panel
with gr.Tabs() as tabs:
################## tab for REPORTS SELECTION ##########
with gr.Tab("Reports",elem_id = "tab-config",id = 2):
gr.Markdown("Reminder: To get better results select the specific report/reports")
#### First level filter for selecting Report source/category
dropdown_sources = gr.Radio(
["Consolidated", "District","Ministry"],
label="Select Report Category",
value="Consolidated",
interactive=True,
)
#### second level filter for selecting subtype within the report category selected above
dropdown_category = gr.Dropdown(
list(files["Consolidated"].keys()),
value = list(files["Consolidated"].keys())[0],
label = "Filter for Sub-Type",
interactive=True)
#### update the secodn level filter abse don values from first level
def rs_change(rs):
return gr.update(choices=files[rs], value=list(files[rs].keys())[0])
dropdown_sources.change(fn=rs_change, inputs=[dropdown_sources], outputs=[dropdown_category])
#### Select the years for reports
dropdown_year = gr.Dropdown(
['2018','2019','2020','2021','2022'],
label="Filter for year",
multiselect=True,
value=['2022'],
interactive=True,
)
gr.Markdown("-------------------------------------------------------------------------")
##### Another way to select reports across category and sub-type
dropdown_reports = gr.Dropdown(
report_list,
label="Or select specific reports",
multiselect=True,
value=[],
interactive=True,)
############### tab for Question selection ###############
with gr.TabItem("Examples",elem_id = "tab-examples",id = 0):
examples_hidden = gr.Textbox(visible = False)
# getting defualt key value to display
first_key = list(QUESTIONS.keys())[0]
# create the question category dropdown
dropdown_samples = gr.Dropdown(QUESTIONS.keys(),value = first_key,
interactive = True,show_label = True,
label = "Select a category of sample questions",
elem_id = "dropdown-samples")
# iterate through the questions list
samples = []
for i,key in enumerate(QUESTIONS.keys()):
examples_visible = True if i == 0 else False
with gr.Row(visible = examples_visible) as group_examples:
examples_questions = gr.Examples(
QUESTIONS[key],
[examples_hidden],
examples_per_page=8,
run_on_click=False,
elem_id=f"examples{i}",
api_name=f"examples{i}",
# label = "Click on the example question or enter your own",
# cache_examples=True,
)
samples.append(group_examples)
########## tab for Sources reporting #################
with gr.Tab("Sources",elem_id = "tab-citations",id = 1):
sources_textbox = gr.HTML(show_label=False, elem_id="sources-textbox")
docs_textbox = gr.State("")
def change_sample_questions(key):
# update the questions list based on key selected
index = list(QUESTIONS.keys()).index(key)
visible_bools = [False] * len(samples)
visible_bools[index] = True
return [gr.update(visible=visible_bools[i]) for i in range(len(samples))]
dropdown_samples.change(change_sample_questions,dropdown_samples,samples)
# static tab 'about us'
with gr.Tab("About",elem_classes = "max-height other-tabs"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("""The [**Office of the Auditor General (OAG)**](https://www.oag.go.ug/welcome) in Uganda, \
consistent with the mandate of Supreme Audit Institutions (SAIs),\
remains integral in ensuring transparency and fiscal responsibility.\
Regularly, the OAG submits comprehensive audit reports to Parliament, \
which serve as instrumental references for both policymakers and the public, \
facilitating informed decisions regarding public expenditure.
However, the prevalent underutilization of these audit reports, \
leading to numerous unimplemented recommendations, has posed significant challenges\
to the effectiveness and impact of the OAG's operations. The audit reports made available \
to the public have not been effectively used by them and other relevant stakeholders. \
The current format of the audit reports is considered a challenge to the \
stakeholders' accessibility and usability. This in one way constrains transparency \
and accountability in the utilization of public funds and effective service delivery.
In the face of this, modern advancements in Artificial Intelligence (AI),\
particularly Retrieval Augmented Generation (RAG) technology, \
emerge as a promising solution. By harnessing the capabilities of such AI tools, \
there is an opportunity not only to improve the accessibility and understanding \
of these audit reports but also to ensure that their insights are effectively \
translated into actionable outcomes, thereby reinforcing public transparency \
and service delivery in Uganda.
To address these issues, the OAG has initiated several projects, \
such as the Audit Recommendation Tracking (ART) System and the Citizens Feedback Platform (CFP). \
These systems are designed to increase the transparency and relevance of audit activities. \
However, despite these efforts, engagement and awareness of the audit findings remain low, \
and the complexity of the information often hinders effective public utilization. Recognizing the need for further\
enhancement in how audit reports are processed and understood, \
the **Civil Society and Budget Advocacy Group (CSBAG)** in partnership with the **GIZ**, \
has recognizing the need for further enhancement in how audit reports are processed and understood.
This prototype tool leveraging AI (Artificial Intelligence) aims at offering critical capabilities such as '
summarizing complex texts, extracting thematic insights, and enabling interactive, \
user-friendly analysis through a chatbot interface. By making the audit reports more accessible,\
this aims to increase readership and utilization among stakeholders, \
which can lead to better accountability and improve service delivery
""")
# static tab for disclaimer
with gr.Tab("Disclaimer",elem_classes = "max-height other-tabs"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("""
- This chatbot is intended for specific use of answering the questions based on audit reports published by OAG, for any use beyond this scope we have no liability to response provided by chatbot.
- We do not guarantee the accuracy, reliability, or completeness of any information provided by the chatbot and disclaim any liability or responsibility for actions taken based on its responses.
- The chatbot may occasionally provide inaccurate or inappropriate responses, and it is important to exercise judgment and critical thinking when interpreting its output.
- The chatbot responses should not be considered professional or authoritative advice and are generated based on patterns in the data it has been trained on.
- The chatbot's responses do not reflect the opinions or policies of our organization or its affiliates.
- Any personal or sensitive information shared with the chatbot is at the user's own risk, and we cannot guarantee complete privacy or confidentiality.
- the chatbot is not deterministic, so there might be change in answer to same question when asked by different users or multiple times.
- By using this chatbot, you agree to these terms and acknowledge that you are solely responsible for any reliance on or actions taken based on its responses.
- **This is just a prototype and being tested and worked upon, so its not perfect and may sometimes give irrelevant answers**. If you are not satisfied with the answer, please ask a more specific question or report your feedback to help us improve the system.
""")
# using event listeners for 1. query box 2. click on example question
# https://www.gradio.app/docs/gradio/textbox#event-listeners-arguments
(textbox
.submit(start_chat, [textbox,chatbot], [textbox,tabs,chatbot],queue = False,api_name = "start_chat_textbox")
.then(chat, [textbox,chatbot, dropdown_sources,dropdown_reports,dropdown_category,dropdown_year], [chatbot,sources_textbox],concurrency_limit = 8,api_name = "chat_textbox")
.then(finish_chat, None, [textbox],api_name = "finish_chat_textbox"))
(examples_hidden
.change(start_chat, [examples_hidden,chatbot], [textbox,tabs,chatbot],queue = False,api_name = "start_chat_examples")
.then(chat, [examples_hidden,chatbot, dropdown_sources,dropdown_reports,dropdown_category,dropdown_year], [chatbot,sources_textbox],concurrency_limit = 8,api_name = "chat_examples")
.then(finish_chat, None, [textbox],api_name = "finish_chat_examples")
)
demo.queue()
demo.launch()