# set path import glob, os, sys; sys.path.append('../udfPreprocess') #import helper #import needed libraries import seaborn as sns import matplotlib.pyplot as plt import numpy as np import streamlit as st import docx from docx.shared import Inches from docx.shared import Pt from docx.enum.style import WD_STYLE_TYPE from udfPreprocess.sdg_classifier import sdg_classification from udfPreprocess.sdg_classifier import runSDGPreprocessingPipeline import configparser import tempfile import sqlite3 import logging logger = logging.getLogger(__name__) def app(): with st.container(): st.markdown("

SDSN x GIZ Policy Action Tracking v0.1

", unsafe_allow_html=True) st.write(' ') st.write(' ') with st.expander("ℹī¸ - About this app", expanded=False): st.write( """ The *Analyse Policy Document* app is an easy-to-use interface built in Streamlit for analyzing policy documents with respect to SDG Classification for the paragraphs/texts in the document - developed by GIZ Data and the Sustainable Development Solution Network. \n """) st.markdown("") with st.container(): if 'filepath' in st.session_state: paraList = runSDGPreprocessingPipeline() with st.spinner("Running SDG"): df, x = sdg_classification(paraList) plt.rcParams['font.size'] = 25 colors = plt.get_cmap('Blues')(np.linspace(0.2, 0.7, len(x))) # plot fig, ax = plt.subplots() ax.pie(x, colors=colors, radius=2, center=(4, 4), wedgeprops={"linewidth": 1, "edgecolor": "white"}, frame=False,labels =list(x.index)) # fig.savefig('temp.png', bbox_inches='tight',dpi= 100) st.markdown("#### Anything related to SDGs? ####") c4, c5, c6 = st.columns([2, 2, 2]) with c5: st.pyplot(fig) c7, c8, c9 = st.columns([1, 10, 1]) with c8: st.table(df) # 1. Keyword heatmap \n # 2. SDG Classification for the paragraphs/texts in the document # # with st.container(): # if 'docs' in st.session_state: # docs = st.session_state['docs'] # docs_processed, df, all_text, par_list = clean.preprocessingForSDG(docs) # # paraList = st.session_state['paraList'] # logging.info("keybert") # with st.spinner("Running Key bert"): # kw_model = load_keyBert() # keywords = kw_model.extract_keywords( # all_text, # keyphrase_ngram_range=(1, 3), # use_mmr=True, # stop_words="english", # top_n=10, # diversity=0.7, # ) # st.markdown("## 🎈 What is my document about?") # df = ( # DataFrame(keywords, columns=["Keyword/Keyphrase", "Relevancy"]) # .sort_values(by="Relevancy", ascending=False) # .reset_index(drop=True) # ) # df1 = ( # DataFrame(keywords, columns=["Keyword/Keyphrase", "Relevancy"]) # .sort_values(by="Relevancy", ascending=False) # .reset_index(drop=True) # ) # df.index += 1 # # Add styling # cmGreen = sns.light_palette("green", as_cmap=True) # cmRed = sns.light_palette("red", as_cmap=True) # df = df.style.background_gradient( # cmap=cmGreen, # subset=[ # "Relevancy", # ], # ) # c1, c2, c3 = st.columns([1, 3, 1]) # format_dictionary = { # "Relevancy": "{:.1%}", # } # df = df.format(format_dictionary) # with c2: # # st.table(df)