import streamlit as st
def app():
with open('style.css') as f:
st.markdown(f"", unsafe_allow_html=True)
footer = """
"""
st.markdown(footer, unsafe_allow_html=True)
st.subheader("Policy Action Tracker Manual")
intro = """
The manual extraction of relevant information from text documents is a time-consuming task for any policy analyst.
As the amount and length of public policy documents in relation to sustainable development (such as National Development Plans and
Nationally Determined Contributions) continuously increases, a major challenge for policy action tracking – the evaluation of stated
goals and targets and their actual implementation on the ground – arises. Luckily, Artificial Intelligence (AI) and Natural Language Processing (NLP)
methods can help in shortening and easing this task for policy analysts.
For this purpose, the United Nations Sustainable Development Solutions Network (SDSN) and the Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH
are collaborating since 2021 in the development of an AI-powered open-source web application that helps find and extract relevant information from public policy
documents faster to facilitate evidence-based decision-making processes in sustainable development and beyond.
- Analizing the policy document
- finding SDG related content
- Make it searchable
- compare it to the national NDC