# set path
import glob, os, sys;
sys.path.append('../utils')
import streamlit as st
import json
import logging
from utils.lexical_search import runLexicalPreprocessingPipeline, lexical_search
from utils.semantic_search import runSemanticPreprocessingPipeline, semantic_keywordsearch
from utils.checkconfig import getconfig
# Declare all the necessary variables
config = getconfig('paramconfig.cfg')
split_by = config.get('semantic_search','SPLIT_BY')
split_length = int(config.get('semantic_search','SPLIT_LENGTH'))
split_overlap = int(config.get('semantic_search','SPLIT_OVERLAP'))
split_respect_sentence_boundary = bool(int(config.get('semantic_search',
'RESPECT_SENTENCE_BOUNDARY')))
remove_punc = bool(int(config.get('semantic_search','REMOVE_PUNC')))
embedding_model = config.get('semantic_search','RETRIEVER')
embedding_model_format = config.get('semantic_search','RETRIEVER_FORMAT')
embedding_layer = int(config.get('semantic_search','RETRIEVER_EMB_LAYER'))
embedding_dim = int(config.get('semantic_search','EMBEDDING_DIM'))
max_seq_len = int(config.get('semantic_search','MAX_SEQ_LENGTH'))
retriever_top_k = int(config.get('semantic_search','RETRIEVER_TOP_K'))
reader_model = config.get('semantic_search','READER')
reader_top_k = int(config.get('semantic_search','RETRIEVER_TOP_K'))
lexical_split_by= config.get('lexical_search','SPLIT_BY')
lexical_split_length=int(config.get('lexical_search','SPLIT_LENGTH'))
lexical_split_overlap = int(config.get('lexical_search','SPLIT_OVERLAP'))
lexical_remove_punc = bool(int(config.get('lexical_search','REMOVE_PUNC')))
lexical_top_k=int(config.get('lexical_search','TOP_K'))
def app():
with st.container():
st.markdown("
Search
",
unsafe_allow_html=True)
st.write(' ')
st.write(' ')
with st.expander("âšī¸ - About this app", expanded=False):
st.write(
"""
The *Keyword Search* app is an easy-to-use interface \
built in Streamlit for doing keyword search in \
policy document - developed by GIZ Data and the \
Sustainable Development Solution Network.
""")
st.write("")
st.write(""" The application allows its user to perform a keyword search\
based on two options: a lexical ([TFIDF](https://en.wikipedia.org/wiki/Tf%E2%80%93idf))\
search and semantic bi-encoder search. The difference between both \
approaches is quite straightforward; while the lexical search only \
displays paragraphs in the document with exact matching results, \
the semantic search shows paragraphs with meaningful connections \
(e.g., synonyms) based on the context as well. The semantic search \
allows for a personalized experience in using the application. Both \
methods employ a probabilistic retrieval framework in its identification\
of relevant paragraphs. By defualt the search is performed using \
'Semantic Search' to find 'Exact/Lexical Matches' please tick the \
checkbox provided, which will by pass semantic search.. Furthermore,\
the application allows the user to search for pre-defined keywords \
from different thematic buckets present in sidebar.""")
with st.sidebar:
with open('docStore/sample/keywordexample.json','r') as json_file:
keywordexample = json.load(json_file)
genre = st.radio("Select Keyword Category", list(keywordexample.keys()))
if genre:
keywordList = keywordexample[genre]
else:
keywordList = None
st.markdown("---")
with st.container():
# if keywordList is not None:
# queryList = st.text_input("You selected the {} category we \
# will look for these keywords in document".format(genre),
# value="{}".format(keywordList))
queryList = st.text_input("Please enter here your question and we \
will look for an answer in the document\
OR enter the keyword you are looking \
for and we will we will look for similar\
context in the document. You can select the \
presets of keywords from sidebar.",
value = "{}".format(keywordList))
searchtype = st.checkbox("Show only Exact Matches")
if st.button("Find them"):
if queryList == "":
st.info("đ¤ No keyword provided, if you dont have any, \
please try example sets from sidebar!")
logging.warning("Terminated as no keyword provided")
else:
if 'filepath' in st.session_state:
if searchtype:
all_documents = runLexicalPreprocessingPipeline(
file_name=st.session_state['filename'],
file_path=st.session_state['filepath'],
split_by=lexical_split_by,
split_length=lexical_split_length,
split_overlap=lexical_split_overlap,
remove_punc=lexical_remove_punc)
logging.info("performing lexical search")
with st.spinner("Performing Exact matching search \
(Lexical search) for you"):
lexical_search(query=queryList,
documents = all_documents['documents'],
top_k = lexical_top_k )
else:
all_documents = runSemanticPreprocessingPipeline(
file_path= st.session_state['filepath'],
file_name = st.session_state['filename'],
split_by=split_by,
split_length= split_length,
split_overlap=split_overlap,
remove_punc= remove_punc,
split_respect_sentence_boundary=split_respect_sentence_boundary)
if len(all_documents['documents']) > 100:
warning_msg = ": This might take sometime, please sit back and relax."
else:
warning_msg = ""
logging.info("starting semantic search")
with st.spinner("Performing Similar/Contextual search{}".format(warning_msg)):
semantic_keywordsearch(query = queryList,
documents = all_documents['documents'],
embedding_model=embedding_model,
embedding_layer=embedding_layer,
embedding_model_format=embedding_model_format,
reader_model=reader_model,reader_top_k=reader_top_k,
retriever_top_k=retriever_top_k, embedding_dim=embedding_dim,
max_seq_len=max_seq_len)
else:
st.info("đ¤ No document found, please try to upload it at the sidebar!")
logging.warning("Terminated as no document provided")