# set path
import glob, os, sys;
sys.path.append('../utils')
#import needed libraries
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import streamlit as st
from st_aggrid import AgGrid
from st_aggrid.shared import ColumnsAutoSizeMode
from utils.sdg_classifier import sdg_classification
from utils.sdg_classifier import runSDGPreprocessingPipeline, load_sdgClassifier
from utils.keyword_extraction import textrank
import logging
logger = logging.getLogger(__name__)
from utils.checkconfig import getconfig
# Declare all the necessary variables
config = getconfig('paramconfig.cfg')
model_name = config.get('sdg','MODEL')
split_by = config.get('sdg','SPLIT_BY')
split_length = int(config.get('sdg','SPLIT_LENGTH'))
split_overlap = int(config.get('sdg','SPLIT_OVERLAP'))
remove_punc = bool(int(config.get('sdg','REMOVE_PUNC')))
split_respect_sentence_boundary = bool(int(config.get('sdg','RESPECT_SENTENCE_BOUNDARY')))
threshold = float(config.get('sdg','THRESHOLD'))
top_n = int(config.get('sdg','TOP_KEY'))
def app():
#### APP INFO #####
with st.container():
st.markdown("
SDG Classification and Keyphrase Extraction
", unsafe_allow_html=True)
st.write(' ')
st.write(' ')
with st.expander("ℹ️ - About this app", expanded=False):
st.write(
"""
The *SDG Analysis* app is an easy-to-use interface built \
in Streamlit for analyzing policy documents with respect to SDG \
Classification for the paragraphs/texts in the document and \
extracting the keyphrase per SDG label - developed by GIZ Data \
and the Sustainable Development Solution Network. \n
""")
st.write("""**Document Processing:** The Uploaded/Selected document is \
automatically cleaned and split into paragraphs with a maximum \
length of 120 words using a Haystack preprocessing pipeline. The \
length of 120 is an empirical value which should reflect the length \
of a “context” and should limit the paragraph length deviation. \
However, since we want to respect the sentence boundary the limit \
can breach and hence this limit of 120 is tentative. \n
""")
st.write("""**SDG cLassification:** The application assigns paragraphs \
to 15 of the 17 United Nations Sustainable Development Goals (SDGs).\
SDG 16 “Peace, Justice and Strong Institutions” and SDG 17 \
“Partnerships for the Goals” are excluded from the analysis due to \
their broad nature which could potentially inflate the results. \
Each paragraph is assigned to one SDG only. Again, the results are \
displayed in a summary table including the number of the SDG, a \
relevancy score highlighted through a green color shading, and the \
respective text of the analyzed paragraph. Additionally, a pie \
chart with a blue color shading is displayed which illustrates the \
three most prominent SDGs in the document. The SDG classification \
uses open-source training [data](https://zenodo.org/record/5550238#.Y25ICHbMJPY) \
from [OSDG.ai](https://osdg.ai/) which is a global \
partnerships and growing community of researchers and institutions \
interested in the classification of research according to the \
Sustainable Development Goals. The summary table only displays \
paragraphs with a calculated relevancy score above 85%. \n""")
st.write("""**Keyphrase Extraction:** The application extracts 15 \
keyphrases from the document, for each SDG label and displays the \
results in a summary table. The keyphrases are extracted using \
using [Textrank](https://github.com/summanlp/textrank)\
which is an easy-to-use computational less expensive \
model leveraging combination of TFIDF and Graph networks.
""")
st.markdown("")
### Main app code ###
with st.container():
if st.button("RUN SDG Analysis"):
if 'filepath' in st.session_state:
file_name = st.session_state['filename']
file_path = st.session_state['filepath']
classifier = load_sdgClassifier(classifier_name=model_name)
st.session_state['sdg_classifier'] = classifier
all_documents = runSDGPreprocessingPipeline(file_name= file_name,
file_path= file_path, split_by= split_by,
split_length= split_length,
split_respect_sentence_boundary= split_respect_sentence_boundary,
split_overlap= split_overlap, remove_punc= remove_punc)
if len(all_documents['documents']) > 100:
warning_msg = ": This might take sometime, please sit back and relax."
else:
warning_msg = ""
with st.spinner("Running SDG Classification{}".format(warning_msg)):
df, x = sdg_classification(haystack_doc=all_documents['documents'],
threshold= threshold)
df = df.drop(['Relevancy'], axis = 1)
sdg_labels = x.SDG.unique()
textrank_keyword_list = []
for label in sdg_labels:
sdgdata = " ".join(df[df.SDG == label].text.to_list())
textranklist_ = textrank(textdata=sdgdata, words= top_n)
if len(textranklist_) > 0:
textrank_keyword_list.append({'SDG':label, 'TextRank Keywords':",".join(textranklist_)})
textrank_keywords_df = pd.DataFrame(textrank_keyword_list)
plt.rcParams['font.size'] = 25
colors = plt.get_cmap('Blues')(np.linspace(0.2, 0.7, len(x)))
# plot
fig, ax = plt.subplots()
ax.pie(x['count'], colors=colors, radius=2, center=(4, 4),
wedgeprops={"linewidth": 1, "edgecolor": "white"},
textprops={'fontsize': 14},
frame=False,labels =list(x.SDG_Num),
labeldistance=1.2)
# fig.savefig('temp.png', bbox_inches='tight',dpi= 100)
st.markdown("#### Anything related to SDGs? ####")
c4, c5, c6 = st.columns([1,2,2])
with c5:
st.pyplot(fig)
with c6:
labeldf = x['SDG_name'].values.tolist()
labeldf = "
".join(labeldf)
st.markdown(labeldf, unsafe_allow_html=True)
st.write("")
st.markdown("###### What keywords are present under SDG classified text? ######")
AgGrid(textrank_keywords_df, reload_data = False,
update_mode="value_changed",
columns_auto_size_mode = ColumnsAutoSizeMode.FIT_CONTENTS)
st.write("")
st.markdown("###### Top few SDG Classified paragraph/text results ######")
AgGrid(df, reload_data = False, update_mode="value_changed",
columns_auto_size_mode = ColumnsAutoSizeMode.FIT_CONTENTS)
else:
st.info("🤔 No document found, please try to upload it at the sidebar!")
logging.warning("Terminated as no document provided")