""" Page for similarities """ ################ # DEPENDENCIES # ################ import streamlit as st import pandas as pd from scipy.sparse import load_npz import utils.similarity_table as similarity_table import psutil import os def get_process_memory(): process = psutil.Process(os.getpid()) return process.memory_info().rss / (1024 * 1024) # Catch DATA # Load Similarity matrix @st.cache_data def load_sim_matrix(): loaded_matrix = load_npz("src/similarities.npz") dense_matrix = loaded_matrix.toarray() return dense_matrix @st.cache_data def load_projects(): orgas_df = pd.read_csv("src/projects/project_orgas.csv") region_df = pd.read_csv("src/projects/project_region.csv") sector_df = pd.read_csv("src/projects/project_sector.csv") status_df = pd.read_csv("src/projects/project_status.csv") texts_df = pd.read_csv("src/projects/project_texts.csv") projects_df = pd.merge(orgas_df, region_df, on='iati_id', how='inner') projects_df = pd.merge(projects_df, sector_df, on='iati_id', how='inner') projects_df = pd.merge(projects_df, status_df, on='iati_id', how='inner') projects_df = pd.merge(projects_df, texts_df, on='iati_id', how='inner') return projects_df # LOAD DATA sim_matrix = load_sim_matrix() projects_df = load_projects() def show_page(): st.write(f"Current RAM usage of this app: {get_process_memory():.2f} MB") st.write("Similarities") df_subset = projects_df.head(10) selected_index = st.selectbox('Select an entry', df_subset.index, format_func=lambda x: df_subset.loc[x, 'iati_id']) st.write(selected_index) # add index and similarity together indecies = range(0, len(sim_matrix)) similarities = sim_matrix[selected_index] zipped_sims = list(zip(indecies, similarities)) # remove all 0 similarities filtered_sims = [(index, similarity) for index, similarity in zipped_sims if similarity != 0] # Select and sort top 20 most similar projects sorted_sims = sorted(filtered_sims, key=lambda x: x[1], reverse=True) top_20_sims = sorted_sims[:20] # create result data frame index_list = [tup[0] for tup in top_20_sims] print(index_list) result_df = projects_df.iloc[index_list] print(len(result_df)) print(len(result_df)) # add other colums to result df similarity_list = [tup[1] for tup in top_20_sims] result_df["similarity"] = similarity_list similarity_table.show_table(result_df, similarity_list)