# set path import glob, os, sys; sys.path.append('../utils') #import needed libraries import seaborn as sns import matplotlib.pyplot as plt import numpy as np import pandas as pd import streamlit as st from st_aggrid import AgGrid from utils.tapp_classifier import load_tappClassifier, tapp_classification import logging logger = logging.getLogger(__name__) from utils.config import get_classifier_params from io import BytesIO import xlsxwriter import plotly.express as px from pandas.api.types import ( is_categorical_dtype, is_datetime64_any_dtype, is_numeric_dtype, is_object_dtype, is_list_like) # Declare all the necessary variables tapp_classifier_identifier = 'tapp' param1 = get_classifier_params(tapp_classifier_identifier) def app(): ### Main app code ### with st.container(): if 'key0' in st.session_state: df = st.session_state.key0 #load Classifiers classifier = load_tappClassifier(classifier_name=param1['model_name']) st.session_state['{}_classifier'.format(tapp_classifier_identifier)] = classifier if len(df) > 100: warning_msg = ": This might take sometime, please sit back and relax." else: warning_msg = "" df = tapp_classification(haystack_doc=df, threshold= param1['threshold']) st.dataframe(df) st.session_state.key1 = df