# set path import glob, os, sys; sys.path.append('../utils') #import needed libraries import seaborn as sns import matplotlib.pyplot as plt import numpy as np import pandas as pd import streamlit as st from st_aggrid import AgGrid import logging logger = logging.getLogger(__name__) from io import BytesIO import xlsxwriter import plotly.express as px from pandas.api.types import ( is_categorical_dtype, is_datetime64_any_dtype, is_numeric_dtype, is_object_dtype, is_list_like) def targets(): if 'key1' in st.session_state: df = st.session_state['key1'].copy() idx = df['NetzeroLabel_Score'].idxmax() netzero_placeholder = df.loc[idx, 'text'] df = df.drop(df.filter(regex='Score').columns, axis=1) df = df[df.TargetLabel==True].reset_index(drop=True) df['keep'] = True df.drop(columns = ['ActionLabel','PolicyLabel','PlansLabel'], inplace=True) st.session_state['target_hits'] = df st.session_state['netzero'] = netzero_placeholder def target_display(): if 'key1' in st.session_state: st.caption(""" **{}** is splitted into **{}** paragraphs/text chunks."""\ .format(os.path.basename(st.session_state['filename']), len(st.session_state['key0']))) hits = st.session_state['target_hits'] if len(hits) !=0: # collecting some statistics count_target = sum(hits['TargetLabel'] == True) count_ghg = sum(hits['GHGLabel'] == True) count_netzero = sum(hits['NetzeroLabel'] == True) count_nonghg = sum(hits['NonGHGLabel'] == True) count_mitigation = sum(hits['MitigationLabel'] == True) count_adaptation = sum(hits['AdaptationLabel'] == True) c1, c2 = st.columns([1,1]) with c1: st.write('**Target Related Paragraphs**: `{}`'.format(count_target)) st.write('**Netzero Related Paragraphs**: `{}`'.format(count_netzero)) st.write('**Mitigation Related Paragraphs**: `{}`'.format(count_mitigation)) with c2: st.write('**GHG Target Related Paragraphs**: `{}`'.format(count_ghg)) st.write('**NonGHG Target Related Paragraphs**: `{}`'.format(count_nonghg)) st.write('**Adaptation Related Paragraphs**: `{}`'.format(count_adaptation)) st.write('----------------') st.markdown("

Sectoral Target Related Paragraphs Count

", unsafe_allow_html=True) cols = list(hits.columns) sector_cols = list(set(cols) - {'TargetLabel','MitigationLabel','AdaptationLabel','GHGLabel','NetzeroLabel','NonGHGLabel','text','keep','page'}) sector_cols.sort() hits['Sector'] = hits.apply(lambda x: [col for col in sector_cols if x[col] == True],axis=1) hits['Sub-Target'] = hits.apply(lambda x: [col for col in ['GHGLabel','NetzeroLabel','NonGHGLabel'] if x[col] == True ],axis=1) placeholder= [] for col in sector_cols: placeholder.append({'Sector':col,'Count':sum(hits[col] == True)}) hits['Sector'] sector_df = pd.DataFrame.from_dict(placeholder) fig = px.bar(sector_df, x='Sector', y='Count') st.plotly_chart(fig,use_container_width= True) st.dataframe(hits[['text','page','keep','MitigationLabel','AdaptationLabel','Sector','Sub-Target',]]) else: st.info("🤔 No Targets Found") def actions(): if 'key1' in st.session_state: df = st.session_state['key1'].copy() df = df.drop(df.filter(regex='Score').columns, axis=1) df = df[df.ActionLabel==True].reset_index(drop=True) df['keep'] = True df.drop(columns = ['TargetLabel','PolicyLabel','PlansLabel','GHGLabel','NetzeroLabel','NonGHGLabel'], inplace=True) st.session_state['action_hits'] = df def action_display(): if 'key1' in st.session_state: st.caption(""" **{}** is splitted into **{}** paragraphs/text chunks."""\ .format(os.path.basename(st.session_state['filename']), len(st.session_state['key0']))) hits = st.session_state['action_hits'] if len(hits) !=0: # collecting some statistics count_action = sum(hits['ActionLabel'] == True) count_mitigation = sum(hits['MitigationLabel'] == True) count_adaptation = sum(hits['AdaptationLabel'] == True) c1, c2 = st.columns([1,1]) with c1: st.write('**Action Related Paragraphs**: `{}`'.format(count_action)) st.write('**Mitigation Related Paragraphs**: `{}`'.format(count_mitigation)) with c2: st.write('**Adaptation Related Paragraphs**: `{}`'.format(count_adaptation)) st.write('----------------') st.markdown("

Sectoral Action Related Paragraphs Count

", unsafe_allow_html=True) cols = list(hits.columns) sector_cols = list(set(cols) - {'ActionLabel','MitigationLabel','AdaptationLabel','GHGLabel','NetzeroLabel','NonGHGLabel','text','keep','page'}) placeholder= [] for col in sector_cols: placeholder.append({'Sector':col,'Count':sum(hits[col] == True)}) sector_df = pd.DataFrame.from_dict(placeholder) fig = px.bar(sector_df, x='Sector', y='Count') st.plotly_chart(fig,use_container_width= True) st.dataframe(hits) else: st.info("🤔 No Actions Found") def policy(): if 'key1' in st.session_state: df = st.session_state['key1'].copy() df = df.drop(df.filter(regex='Score').columns, axis=1) df = df[df.PolicyLabel==True].reset_index(drop=True) df['keep'] = True df.drop(columns = ['TargetLabel','ActionLabel','PlansLabel','GHGLabel','NetzeroLabel','NonGHGLabel'], inplace=True) st.session_state['policy_hits'] = df def policy_display(): if 'key1' in st.session_state: st.caption(""" **{}** is splitted into **{}** paragraphs/text chunks."""\ .format(os.path.basename(st.session_state['filename']), len(st.session_state['key0']))) hits = st.session_state['policy_hits'] if len(hits) !=0: # collecting some statistics count_action = sum(hits['PolicyLabel'] == True) count_mitigation = sum(hits['MitigationLabel'] == True) count_adaptation = sum(hits['AdaptationLabel'] == True) c1, c2 = st.columns([1,1]) with c1: st.write('**Policy Related Paragraphs**: `{}`'.format(count_action)) st.write('**Mitigation Related Paragraphs**: `{}`'.format(count_mitigation)) with c2: st.write('**Adaptation Related Paragraphs**: `{}`'.format(count_adaptation)) st.write('----------------') st.markdown("

Sectoral Policy Related Paragraphs Count

", unsafe_allow_html=True) cols = list(hits.columns) sector_cols = list(set(cols) - {'PolicyLabel','MitigationLabel','AdaptationLabel','GHGLabel','NetzeroLabel','NonGHGLabel','text','keep','page'}) placeholder= [] for col in sector_cols: placeholder.append({'Sector':col,'Count':sum(hits[col] == True)}) sector_df = pd.DataFrame.from_dict(placeholder) fig = px.bar(sector_df, x='Sector', y='Count') st.plotly_chart(fig,use_container_width= True) st.dataframe(hits) else: st.info("🤔 No Policy Found") def plans(): if 'key1' in st.session_state: df = st.session_state['key1'].copy() df = df.drop(df.filter(regex='Score').columns, axis=1) df = df[df.PlansLabel==True].reset_index(drop=True) df['keep'] = True df.drop(columns = ['TargetLabel','PolicyLabel','ActionLabel','GHGLabel','NetzeroLabel','NonGHGLabel'], inplace=True) st.session_state['plan_hits'] = df def plans_display(): if 'key1' in st.session_state: st.caption(""" **{}** is splitted into **{}** paragraphs/text chunks."""\ .format(os.path.basename(st.session_state['filename']), len(st.session_state['key0']))) hits = st.session_state['plan_hits'] if len(hits) !=0: # collecting some statistics count_action = sum(hits['PlansLabel'] == True) count_mitigation = sum(hits['MitigationLabel'] == True) count_adaptation = sum(hits['AdaptationLabel'] == True) c1, c2 = st.columns([1,1]) with c1: st.write('**Plans Related Paragraphs**: `{}`'.format(count_action)) st.write('**Mitigation Related Paragraphs**: `{}`'.format(count_mitigation)) with c2: st.write('**Adaptation Related Paragraphs**: `{}`'.format(count_adaptation)) st.write('----------------') st.markdown("

Sectoral Plans Related Paragraphs Count

", unsafe_allow_html=True) cols = list(hits.columns) sector_cols = list(set(cols) - {'PlanLabel','MitigationLabel','AdaptationLabel','GHGLabel','NetzeroLabel','NonGHGLabel','text','keep','page'}) placeholder= [] for col in sector_cols: placeholder.append({'Sector':col,'Count':sum(hits[col] == True)}) sector_df = pd.DataFrame.from_dict(placeholder) fig = px.bar(sector_df, x='Sector', y='Count') st.plotly_chart(fig,use_container_width= True) st.dataframe(hits) else: st.info("🤔 No Plans Found")