import os import numpy as np import glob import open3d as o3d import json import argparse import glob parser=argparse.ArgumentParser() parser.add_argument("--cat",required=True,type=str,nargs="+") parser.add_argument("--keyword",default="lowres",type=str) parser.add_argument("--root_dir",type=str,default="../data") args=parser.parse_args() keyword=args.keyword sdf_folder="occ_data" other_folder="other_data" data_dir=args.root_dir align_dir=os.path.join(args.root_dir,"align_mat_all") # this alignment matrix is aligned from highres scan to lowres scan # the alignment matrix is still under cleaning, not all the data have proper alignment matrix yet. align_filelist=glob.glob(align_dir+"/*/*.txt") valid_model_list=[] for align_filepath in align_filelist: if "-v" in align_filepath: align_mat=np.loadtxt(align_filepath) if align_mat.shape[0]!=4: continue model_id=os.path.basename(align_filepath).split("-")[0] valid_model_list.append(model_id) print("there are %d valid lowres models"%(len(valid_model_list))) category_list=args.cat for category in category_list: train_path=os.path.join(data_dir,sdf_folder,category,"train.lst") with open(train_path,'r') as f: train_list=f.readlines() train_list=[item.rstrip() for item in train_list] if ".npz" in train_list[0]: train_list=[item[:-4] for item in train_list] val_path=os.path.join(data_dir,sdf_folder,category,"val.lst") with open(val_path,'r') as f: val_list=f.readlines() val_list=[item.rstrip() for item in val_list] if ".npz" in val_list[0]: val_list=[item[:-4] for item in val_list] sdf_dir=os.path.join(data_dir,sdf_folder,category) filelist=os.listdir(sdf_dir) model_id_list=[item[:-4] for item in filelist if ".npz" in item] train_par_img_list=[] val_par_img_list=[] for model_id in model_id_list: if model_id not in valid_model_list: continue image_dir=os.path.join(data_dir,other_folder,category,"6_images",model_id) partial_dir=os.path.join(data_dir,other_folder,category,"5_partial_points",model_id) if os.path.exists(image_dir)==False and os.path.exists(partial_dir)==False: continue if os.path.exists(image_dir): image_list=glob.glob(image_dir+"/*.jpg")+glob.glob(image_dir+"/*.png") image_list=[os.path.basename(image_path) for image_path in image_list] else: image_list=[] if os.path.exists(partial_dir): partial_list=glob.glob(partial_dir+"/%s_partial_points_*.ply"%(keyword)) else: partial_list=[] partial_valid_list=[] for partial_filepath in partial_list: par_o3d=o3d.io.read_point_cloud(partial_filepath) par_xyz=np.asarray(par_o3d.points) if par_xyz.shape[0]>2048: partial_valid_list.append(os.path.basename(partial_filepath)) if model_id in val_list: if "%s_partial_points_0.ply"%(keyword) in partial_valid_list: partial_valid_list=["%s_partial_points_0.ply"%(keyword)] else: partial_valid_list=[] if len(image_list)==0 and len(partial_valid_list)==0: continue ret_dict={ "model_id":model_id, "image_filenames":image_list[:], "partial_filenames":partial_valid_list[:] } if model_id in train_list: train_par_img_list.append(ret_dict) elif model_id in val_list: val_par_img_list.append(ret_dict) train_save_path=os.path.join(sdf_dir,"%s_train_par_img.json"%(keyword)) with open(train_save_path,'w') as f: json.dump(train_par_img_list,f,indent=4) val_save_path=os.path.join(sdf_dir,"%s_val_par_img.json"%(keyword)) with open(val_save_path,'w') as f: json.dump(val_par_img_list,f,indent=4)