import gradio as gr from huggingface_hub import InferenceClient from web import search # Import web search tool client = InferenceClient("Futuresony/future_ai_12_10_2024.gguf") def is_uncertain(question, response): """Check if the model's response is unreliable.""" # 1. If response length is too short, it's likely a guess. if len(response.split()) < 4: return True # 2. If response repeats the question, it might be unsure. if response.lower() in question.lower(): return True # 3. If the response contains generic phrases like "Kulingana na utafiti" (According to research) uncertain_phrases = [ "Kulingana na utafiti", "Inaaminika kuwa", "Ninadhani", "It is believed that", "Some people say", "Inasemekana kuwa" ] if any(phrase.lower() in response.lower() for phrase in uncertain_phrases): return True return False def google_search(query): """Fetch search results from Google.""" results = search(query) if results: return results[0] # Return the first result return "Sorry, I couldn't find an answer on Google." def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response # Stream partial responses # If response is unreliable, fetch from Google if is_uncertain(message, response): google_response = google_search(message) yield f"šŸ¤– AI: {response}\n\nšŸŒ Google: {google_response}" demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()