import torch from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel import gradio as gr # -------------------- # Load Base Model and LoRA Adapter # -------------------- def load_model_and_adapter(): base_model_name = "unsloth/Llama-3.2-3B-Instruct" # Replace with your base model name adapter_repo = "Futuresony/future_ai_12_10_2024" # Your Hugging Face LoRA repo # Load tokenizer and base model tokenizer = AutoTokenizer.from_pretrained(base_model_name) base_model = AutoModelForCausalLM.from_pretrained( base_model_name, torch_dtype=torch.float16, # Use float16 for efficiency if GPU is available device_map="auto" # Automatically map to GPU or CPU ) # Load LoRA adapter model = PeftModel.from_pretrained(base_model, adapter_repo) model.eval() # Set to evaluation mode return tokenizer, model # Load the model and tokenizer once tokenizer, model = load_model_and_adapter() # -------------------- # Generate Response Function # -------------------- def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) # Prepare input prompt for generation prompt = "\n".join([f"{m['role']}: {m['content']}" for m in messages]) inputs = tokenizer(prompt, return_tensors="pt").to(model.device) # Generate response outputs = model.generate( **inputs, max_length=max_tokens, temperature=temperature, top_p=top_p, pad_token_id=tokenizer.eos_token_id, eos_token_id=tokenizer.eos_token_id ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) response = response.split("assistant:")[-1].strip() # Clean response return response # -------------------- # Gradio Interface # -------------------- demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a helpful assistant.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], ) # -------------------- # Launch the Interface # -------------------- if __name__ == "__main__": demo.launch()