# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang) # 2023 Horizon Inc. (authors: Xingchen Song) # 2024 Alibaba Inc (authors: Xiang Lyu) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import torch import json import re import datetime import yaml import deepspeed import torch.optim as optim import torch.distributed as dist from torch.utils.tensorboard import SummaryWriter from torch.utils.data import DataLoader from torch.nn.utils import clip_grad_norm_ from deepspeed.runtime.zero.stage_1_and_2 import estimate_zero2_model_states_mem_needs_all_live from cosyvoice.dataset.dataset import Dataset from cosyvoice.utils.scheduler import WarmupLR, NoamHoldAnnealing, ConstantLR def init_distributed(args): world_size = int(os.environ.get('WORLD_SIZE', 1)) local_rank = int(os.environ.get('LOCAL_RANK', 0)) rank = int(os.environ.get('RANK', 0)) logging.info('training on multiple gpus, this gpu {}'.format(local_rank) + ', rank {}, world_size {}'.format(rank, world_size)) if args.train_engine == 'torch_ddp': torch.cuda.set_device(local_rank) dist.init_process_group(args.dist_backend) else: deepspeed.init_distributed(dist_backend=args.dist_backend) return world_size, local_rank, rank def init_dataset_and_dataloader(args, configs, gan): data_pipeline = configs['data_pipeline_gan'] if gan is True else configs['data_pipeline'] train_dataset = Dataset(args.train_data, data_pipeline=data_pipeline, mode='train', gan=gan, shuffle=True, partition=True) cv_dataset = Dataset(args.cv_data, data_pipeline=data_pipeline, mode='train', gan=gan, shuffle=False, partition=False) # do not use persistent_workers=True, as whisper tokenizer opens tiktoken file each time when the for loop starts train_data_loader = DataLoader(train_dataset, batch_size=None, pin_memory=args.pin_memory, num_workers=args.num_workers, prefetch_factor=args.prefetch) cv_data_loader = DataLoader(cv_dataset, batch_size=None, pin_memory=args.pin_memory, num_workers=args.num_workers, prefetch_factor=args.prefetch) return train_dataset, cv_dataset, train_data_loader, cv_data_loader def check_modify_and_save_config(args, configs): if args.train_engine == "torch_ddp": configs['train_conf']["dtype"] = 'fp32' else: with open(args.deepspeed_config, 'r') as fin: ds_configs = json.load(fin) if "fp16" in ds_configs and ds_configs["fp16"]["enabled"]: configs['train_conf']["dtype"] = "fp16" elif "bf16" in ds_configs and ds_configs["bf16"]["enabled"]: configs['train_conf']["dtype"] = "bf16" else: configs['train_conf']["dtype"] = "fp32" assert ds_configs["train_micro_batch_size_per_gpu"] == 1 # if use deepspeed, override ddp config configs['train_conf']['save_per_step'] = int(configs['train_conf']['save_per_step'] * configs['train_conf']['accum_grad'] / ds_configs["gradient_accumulation_steps"]) configs['train_conf']['accum_grad'] = ds_configs["gradient_accumulation_steps"] configs['train_conf']['grad_clip'] = ds_configs["gradient_clipping"] configs['train_conf']['log_interval'] = ds_configs["steps_per_print"] return configs def wrap_cuda_model(args, model): local_world_size = int(os.environ.get('LOCAL_WORLD_SIZE', 1)) world_size = int(os.environ.get('WORLD_SIZE', 1)) if args.train_engine == "torch_ddp": # native pytorch ddp assert (torch.cuda.is_available()) model.cuda() model = torch.nn.parallel.DistributedDataParallel(model, find_unused_parameters=True) else: if int(os.environ.get('RANK', 0)) == 0: logging.info("Estimating model states memory needs (zero2)...") estimate_zero2_model_states_mem_needs_all_live( model, num_gpus_per_node=local_world_size, num_nodes=world_size // local_world_size) return model def init_optimizer_and_scheduler(args, configs, model, gan): if gan is False: if configs['train_conf']['optim'] == 'adam': optimizer = optim.Adam(model.parameters(), **configs['train_conf']['optim_conf']) elif configs['train_conf']['optim'] == 'adamw': optimizer = optim.AdamW(model.parameters(), **configs['train_conf']['optim_conf']) else: raise ValueError("unknown optimizer: " + configs['train_conf']) if configs['train_conf']['scheduler'] == 'warmuplr': scheduler_type = WarmupLR scheduler = WarmupLR(optimizer, **configs['train_conf']['scheduler_conf']) elif configs['train_conf']['scheduler'] == 'NoamHoldAnnealing': scheduler_type = NoamHoldAnnealing scheduler = NoamHoldAnnealing(optimizer, **configs['train_conf']['scheduler_conf']) elif configs['train_conf']['scheduler'] == 'constantlr': scheduler_type = ConstantLR scheduler = ConstantLR(optimizer) else: raise ValueError("unknown scheduler: " + configs['train_conf']) # use deepspeed optimizer for speedup if args.train_engine == "deepspeed": def scheduler(opt): return scheduler_type(opt, **configs['train_conf']['scheduler_conf']) model, optimizer, _, scheduler = deepspeed.initialize( args=args, model=model, optimizer=None, lr_scheduler=scheduler, model_parameters=model.parameters()) optimizer_d, scheduler_d = None, None else: # currently we wrap generator and discriminator in one model, so we cannot use deepspeed if configs['train_conf']['optim'] == 'adam': optimizer = optim.Adam(model.module.generator.parameters(), **configs['train_conf']['optim_conf']) elif configs['train_conf']['optim'] == 'adamw': optimizer = optim.AdamW(model.module.generator.parameters(), **configs['train_conf']['optim_conf']) else: raise ValueError("unknown optimizer: " + configs['train_conf']) if configs['train_conf']['scheduler'] == 'warmuplr': scheduler_type = WarmupLR scheduler = WarmupLR(optimizer, **configs['train_conf']['scheduler_conf']) elif configs['train_conf']['scheduler'] == 'NoamHoldAnnealing': scheduler_type = NoamHoldAnnealing scheduler = NoamHoldAnnealing(optimizer, **configs['train_conf']['scheduler_conf']) elif configs['train_conf']['scheduler'] == 'constantlr': scheduler_type = ConstantLR scheduler = ConstantLR(optimizer) else: raise ValueError("unknown scheduler: " + configs['train_conf']) if configs['train_conf']['optim_d'] == 'adam': optimizer_d = optim.Adam(model.module.discriminator.parameters(), **configs['train_conf']['optim_conf']) elif configs['train_conf']['optim_d'] == 'adamw': optimizer_d = optim.AdamW(model.module.discriminator.parameters(), **configs['train_conf']['optim_conf']) else: raise ValueError("unknown optimizer: " + configs['train_conf']) if configs['train_conf']['scheduler_d'] == 'warmuplr': scheduler_type = WarmupLR scheduler_d = WarmupLR(optimizer_d, **configs['train_conf']['scheduler_conf']) elif configs['train_conf']['scheduler_d'] == 'NoamHoldAnnealing': scheduler_type = NoamHoldAnnealing scheduler_d = NoamHoldAnnealing(optimizer_d, **configs['train_conf']['scheduler_conf']) elif configs['train_conf']['scheduler'] == 'constantlr': scheduler_type = ConstantLR scheduler_d = ConstantLR(optimizer_d) else: raise ValueError("unknown scheduler: " + configs['train_conf']) return model, optimizer, scheduler, optimizer_d, scheduler_d def init_summarywriter(args): writer = None if int(os.environ.get('RANK', 0)) == 0: os.makedirs(args.model_dir, exist_ok=True) writer = SummaryWriter(args.tensorboard_dir) return writer def save_model(model, model_name, info_dict): rank = int(os.environ.get('RANK', 0)) model_dir = info_dict["model_dir"] save_model_path = os.path.join(model_dir, '{}.pt'.format(model_name)) if info_dict["train_engine"] == "torch_ddp": if rank == 0: torch.save({**model.module.state_dict(), 'epoch': info_dict['epoch'], 'step': info_dict['step']}, save_model_path) else: with torch.no_grad(): model.save_checkpoint(save_dir=model_dir, tag=model_name, client_state=info_dict) if rank == 0: info_path = re.sub('.pt$', '.yaml', save_model_path) info_dict['save_time'] = datetime.datetime.now().strftime('%d/%m/%Y %H:%M:%S') with open(info_path, 'w') as fout: data = yaml.dump(info_dict) fout.write(data) logging.info('[Rank {}] Checkpoint: save to checkpoint {}'.format(rank, save_model_path)) def cosyvoice_join(group_join, info_dict): world_size = int(os.environ.get('WORLD_SIZE', 1)) local_rank = int(os.environ.get('LOCAL_RANK', 0)) rank = int(os.environ.get('RANK', 0)) if info_dict["batch_idx"] != 0: # we try to join all rank in both ddp and deepspeed mode, in case different rank has different lr try: dist.monitored_barrier(group=group_join, timeout=group_join.options._timeout) return False except RuntimeError as e: logging.info("Detected uneven workload distribution: {}\n".format(e) + "Break current worker to manually join all workers, " + "world_size {}, current rank {}, current local_rank {}\n". format(world_size, rank, local_rank)) return True else: return False def batch_forward(model, batch, scaler, info_dict): device = int(os.environ.get('LOCAL_RANK', 0)) dtype = info_dict["dtype"] if dtype == "fp16": dtype = torch.float16 elif dtype == "bf16": dtype = torch.bfloat16 else: # fp32 dtype = torch.float32 if info_dict['train_engine'] == 'torch_ddp': autocast = torch.cuda.amp.autocast(enabled=scaler is not None) else: autocast = torch.cuda.amp.autocast(enabled=True, dtype=dtype, cache_enabled=False) with autocast: info_dict['loss_dict'] = model(batch, device) return info_dict def batch_backward(model, scaler, info_dict): if info_dict["train_engine"] == "deepspeed": scaled_loss = model.backward(info_dict['loss_dict']['loss']) else: scaled_loss = info_dict['loss_dict']['loss'] / info_dict['accum_grad'] if scaler is not None: scaler.scale(scaled_loss).backward() else: scaled_loss.backward() info_dict['loss_dict']['loss'] = scaled_loss return info_dict def update_parameter_and_lr(model, optimizer, scheduler, scaler, info_dict): grad_norm = 0.0 if info_dict['train_engine'] == "deepspeed": info_dict["is_gradient_accumulation_boundary"] = model.is_gradient_accumulation_boundary() model.step() grad_norm = model.get_global_grad_norm() elif (info_dict['batch_idx'] + 1) % info_dict["accum_grad"] == 0: # Use mixed precision training if scaler is not None: scaler.unscale_(optimizer) grad_norm = clip_grad_norm_(model.parameters(), info_dict['grad_clip']) # We don't check grad here since that if the gradient # has inf/nan values, scaler.step will skip # optimizer.step(). if torch.isfinite(grad_norm): scaler.step(optimizer) scaler.update() else: grad_norm = clip_grad_norm_(model.parameters(), info_dict['grad_clip']) if torch.isfinite(grad_norm): optimizer.step() optimizer.zero_grad() scheduler.step() info_dict["lr"] = optimizer.param_groups[0]['lr'] info_dict["grad_norm"] = grad_norm return info_dict def log_per_step(writer, info_dict): tag = info_dict["tag"] epoch = info_dict.get('epoch', 0) step = info_dict["step"] batch_idx = info_dict["batch_idx"] loss_dict = info_dict['loss_dict'] rank = int(os.environ.get('RANK', 0)) # only rank 0 write to tensorboard to avoid multi-process write if writer is not None: if (info_dict['train_engine'] == 'deepspeed' and info_dict['is_gradient_accumulation_boundary'] is True) or \ (info_dict['train_engine'] == 'torch_ddp' and (info_dict['batch_idx'] + 1) % info_dict['accum_grad'] == 0): for k in ['epoch', 'lr', 'grad_norm']: writer.add_scalar('{}/{}'.format(tag, k), info_dict[k], step + 1) for k, v in loss_dict.items(): writer.add_scalar('{}/{}'.format(tag, k), v, step + 1) # TRAIN & CV, Shell log (stdout) if (info_dict['batch_idx'] + 1) % info_dict['log_interval'] == 0: log_str = '{} Batch {}/{} '.format(tag, epoch, batch_idx + 1) for name, value in loss_dict.items(): log_str += '{} {:.6f} '.format(name, value) if tag == "TRAIN": log_str += 'lr {:.8f} grad_norm {:.6f}'.format( info_dict["lr"], info_dict['grad_norm']) log_str += ' rank {}'.format(rank) logging.debug(log_str) def log_per_save(writer, info_dict): tag = info_dict["tag"] epoch = info_dict["epoch"] step = info_dict["step"] loss_dict = info_dict["loss_dict"] lr = info_dict['lr'] rank = int(os.environ.get('RANK', 0)) logging.info( 'Epoch {} Step {} CV info lr {} {} rank {}'.format( epoch, step + 1, lr, rank, ' '.join(['{}_{}'.format(k, v) for k, v in loss_dict.items()]))) if writer is not None: for k in ['epoch', 'lr']: writer.add_scalar('{}/{}'.format(tag, k), info_dict[k], step + 1) for k, v in loss_dict.items(): writer.add_scalar('{}/{}'.format(tag, k), v, step + 1)