import base64 import os from functools import lru_cache from typing import Optional import torch from transformers import AutoTokenizer from whisper.tokenizer import Tokenizer import tiktoken LANGUAGES = { "en": "english", "zh": "chinese", "de": "german", "es": "spanish", "ru": "russian", "ko": "korean", "fr": "french", "ja": "japanese", "pt": "portuguese", "tr": "turkish", "pl": "polish", "ca": "catalan", "nl": "dutch", "ar": "arabic", "sv": "swedish", "it": "italian", "id": "indonesian", "hi": "hindi", "fi": "finnish", "vi": "vietnamese", "he": "hebrew", "uk": "ukrainian", "el": "greek", "ms": "malay", "cs": "czech", "ro": "romanian", "da": "danish", "hu": "hungarian", "ta": "tamil", "no": "norwegian", "th": "thai", "ur": "urdu", "hr": "croatian", "bg": "bulgarian", "lt": "lithuanian", "la": "latin", "mi": "maori", "ml": "malayalam", "cy": "welsh", "sk": "slovak", "te": "telugu", "fa": "persian", "lv": "latvian", "bn": "bengali", "sr": "serbian", "az": "azerbaijani", "sl": "slovenian", "kn": "kannada", "et": "estonian", "mk": "macedonian", "br": "breton", "eu": "basque", "is": "icelandic", "hy": "armenian", "ne": "nepali", "mn": "mongolian", "bs": "bosnian", "kk": "kazakh", "sq": "albanian", "sw": "swahili", "gl": "galician", "mr": "marathi", "pa": "punjabi", "si": "sinhala", "km": "khmer", "sn": "shona", "yo": "yoruba", "so": "somali", "af": "afrikaans", "oc": "occitan", "ka": "georgian", "be": "belarusian", "tg": "tajik", "sd": "sindhi", "gu": "gujarati", "am": "amharic", "yi": "yiddish", "lo": "lao", "uz": "uzbek", "fo": "faroese", "ht": "haitian creole", "ps": "pashto", "tk": "turkmen", "nn": "nynorsk", "mt": "maltese", "sa": "sanskrit", "lb": "luxembourgish", "my": "myanmar", "bo": "tibetan", "tl": "tagalog", "mg": "malagasy", "as": "assamese", "tt": "tatar", "haw": "hawaiian", "ln": "lingala", "ha": "hausa", "ba": "bashkir", "jw": "javanese", "su": "sundanese", "yue": "cantonese", "minnan": "minnan", "wuyu": "wuyu", "dialect": "dialect", "zh/en": "zh/en", "en/zh": "en/zh", } # language code lookup by name, with a few language aliases TO_LANGUAGE_CODE = { **{language: code for code, language in LANGUAGES.items()}, "burmese": "my", "valencian": "ca", "flemish": "nl", "haitian": "ht", "letzeburgesch": "lb", "pushto": "ps", "panjabi": "pa", "moldavian": "ro", "moldovan": "ro", "sinhalese": "si", "castilian": "es", "mandarin": "zh", } AUDIO_EVENT = { "ASR": "ASR", "AED": "AED", "SER": "SER", "Speech": "Speech", "/Speech": "/Speech", "BGM": "BGM", "/BGM": "/BGM", "Laughter": "Laughter", "/Laughter": "/Laughter", "Applause": "Applause", "/Applause": "/Applause", } EMOTION = { "HAPPY": "HAPPY", "SAD": "SAD", "ANGRY": "ANGRY", "NEUTRAL": "NEUTRAL", } TTS_Vocal_Token = { "TTS/B": "TTS/B", "TTS/O": "TTS/O", "TTS/Q": "TTS/Q", "TTS/A": "TTS/A", "TTS/CO": "TTS/CO", "TTS/CL": "TTS/CL", "TTS/H": "TTS/H", **{f"TTS/SP{i:02d}": f"TTS/SP{i:02d}" for i in range(1, 14)} } @lru_cache(maxsize=None) def get_encoding(name: str = "gpt2", num_languages: int = 99): vocab_path = os.path.join(os.path.dirname(__file__), "assets", f"{name}.tiktoken") ranks = { base64.b64decode(token): int(rank) for token, rank in (line.split() for line in open(vocab_path) if line) } n_vocab = len(ranks) special_tokens = {} specials = [ "<|endoftext|>", "<|startoftranscript|>", *[f"<|{lang}|>" for lang in list(LANGUAGES.keys())[:num_languages]], *[f"<|{audio_event}|>" for audio_event in list(AUDIO_EVENT.keys())], *[f"<|{emotion}|>" for emotion in list(EMOTION.keys())], "<|translate|>", "<|transcribe|>", "<|startoflm|>", "<|startofprev|>", "<|nospeech|>", "<|notimestamps|>", *[f"<|SPECIAL_TOKEN_{i}|>" for i in range(1, 31)], # register special tokens for ASR *[f"<|{tts}|>" for tts in list(TTS_Vocal_Token.keys())], # register special tokens for TTS *[f"<|{i * 0.02:.2f}|>" for i in range(1501)], ] for token in specials: special_tokens[token] = n_vocab n_vocab += 1 return tiktoken.Encoding( name=os.path.basename(vocab_path), explicit_n_vocab=n_vocab, pat_str=r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""", mergeable_ranks=ranks, special_tokens=special_tokens, ) @lru_cache(maxsize=None) def get_tokenizer( multilingual: bool, *, num_languages: int = 99, language: Optional[str] = None, task: Optional[str] = None, # Literal["transcribe", "translate", None] ) -> Tokenizer: if language is not None: language = language.lower() if language not in LANGUAGES: if language in TO_LANGUAGE_CODE: language = TO_LANGUAGE_CODE[language] else: raise ValueError(f"Unsupported language: {language}") if multilingual: encoding_name = "multilingual_zh_ja_yue_char_del" language = language or "en" task = task or "transcribe" else: encoding_name = "gpt2" language = None task = None encoding = get_encoding(name=encoding_name, num_languages=num_languages) return Tokenizer( encoding=encoding, num_languages=num_languages, language=language, task=task ) class QwenTokenizer(): def __init__(self, token_path, skip_special_tokens=True): super().__init__() # NOTE: non-chat model, all these special tokens keep randomly initialized. special_tokens = { 'eos_token': '<|endoftext|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': [ '<|im_start|>', '<|im_end|>', '<|endofprompt|>', '[breath]', '', '', '[noise]', '[laughter]', '[cough]', '[clucking]', '[accent]', '[quick_breath]', "", "", "[hissing]", "[sigh]", "[vocalized-noise]", "[lipsmack]", "[mn]" ] } self.tokenizer = AutoTokenizer.from_pretrained(token_path) self.tokenizer.add_special_tokens(special_tokens) self.skip_special_tokens = skip_special_tokens def encode(self, text, **kwargs): tokens = self.tokenizer([text], return_tensors="pt") tokens = tokens["input_ids"][0].cpu().tolist() return tokens def decode(self, tokens): tokens = torch.tensor(tokens, dtype=torch.int64) text = self.tokenizer.batch_decode([tokens], skip_special_tokens=self.skip_special_tokens)[0] return text @lru_cache(maxsize=None) def get_qwen_tokenizer( token_path: str, skip_special_tokens: bool ) -> QwenTokenizer: return QwenTokenizer(token_path=token_path, skip_special_tokens=skip_special_tokens)