# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Liu Yue) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import torch os.system('nvidia-smi') os.system('apt update -y && apt-get install -y apt-utils && apt install -y unzip') print(torch.backends.cudnn.version()) import importlib import sys dynamic_modules_file1 = '/home/user/.pyenv/versions/3.10.16/lib/python3.10/site-packages/diffusers/utils/dynamic_modules_utils.py' dynamic_modules_file2 = '/usr/local/lib/python3.10/site-packages/diffusers/utils/dynamic_modules_utils.py' def modify_dynamic_modules_file(dynamic_modules_file): if os.path.exists(dynamic_modules_file): with open(dynamic_modules_file, 'r') as file: lines = file.readlines() with open(dynamic_modules_file, 'w') as file: for line in lines: if "from huggingface_hub import cached_download" in line: file.write("from huggingface_hub import hf_hub_download, model_info\n") else: file.write(line) modify_dynamic_modules_file(dynamic_modules_file1) modify_dynamic_modules_file(dynamic_modules_file2) import sys import argparse import gradio as gr import numpy as np import torchaudio import random import librosa from funasr import AutoModel from funasr.utils.postprocess_utils import rich_transcription_postprocess ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append('{}/third_party/Matcha-TTS'.format(ROOT_DIR)) from modelscope import snapshot_download snapshot_download('iic/CosyVoice2-0.5B', local_dir='pretrained_models/CosyVoice2-0.5B') snapshot_download('iic/CosyVoice-ttsfrd', local_dir='pretrained_models/CosyVoice-ttsfrd') os.system('cd pretrained_models/CosyVoice-ttsfrd/ && pip install ttsfrd_dependency-0.1-py3-none-any.whl && pip install ttsfrd-0.4.2-cp310-cp310-linux_x86_64.whl && tar -xvf resource.tar') from cosyvoice.cli.cosyvoice import CosyVoice2 from cosyvoice.utils.file_utils import load_wav, logging from cosyvoice.utils.common import set_all_random_seed inference_mode_list = ['3s极速复刻', '自然语言控制'] instruct_dict = {'3s极速复刻': '1. 选择prompt音频文件,或录入prompt音频,注意不超过30s,若同时提供,优先选择prompt音频文件\n2. 输入prompt文本\n3. 点击生成音频按钮', '自然语言控制': '1. 选择prompt音频文件,或录入prompt音频,注意不超过30s,若同时提供,优先选择prompt音频文件\n2. 输入instruct文本\n3. 点击生成音频按钮'} stream_mode_list = [('否', False), ('是', True)] max_val = 0.8 def generate_seed(): seed = random.randint(1, 100000000) return { "__type__": "update", "value": seed } def postprocess(speech, top_db=60, hop_length=220, win_length=440): speech, _ = librosa.effects.trim( speech, top_db=top_db, frame_length=win_length, hop_length=hop_length ) if speech.abs().max() > max_val: speech = speech / speech.abs().max() * max_val speech = torch.concat([speech, torch.zeros(1, int(target_sr * 0.2))], dim=1) return speech def change_instruction(mode_checkbox_group): return instruct_dict[mode_checkbox_group] def prompt_wav_recognition(prompt_wav): res = asr_model.generate(input=prompt_wav, language="auto", # "zn", "en", "yue", "ja", "ko", "nospeech" use_itn=True, ) text = res[0]["text"].split('|>')[-1] return text def generate_audio(tts_text, mode_checkbox_group, prompt_text, prompt_wav_upload, prompt_wav_record, instruct_text, seed, stream): sft_dropdown, speed = '', 1.0 if prompt_wav_upload is not None: prompt_wav = prompt_wav_upload elif prompt_wav_record is not None: prompt_wav = prompt_wav_record else: prompt_wav = None # if instruct mode, please make sure that model is iic/CosyVoice-300M-Instruct and not cross_lingual mode if mode_checkbox_group in ['自然语言控制']: if instruct_text == '': gr.Warning('您正在使用自然语言控制模式, 请输入instruct文本') yield (target_sr, default_data) if prompt_wav is None: gr.Info('您正在使用自然语言控制模式, 请输入prompt音频') # if cross_lingual mode, please make sure that model is iic/CosyVoice-300M and tts_text prompt_text are different language if mode_checkbox_group in ['跨语种复刻']: if cosyvoice.frontend.instruct is True: gr.Warning('您正在使用跨语种复刻模式, {}模型不支持此模式, 请使用iic/CosyVoice-300M模型'.format(args.model_dir)) yield (target_sr, default_data) if instruct_text != '': gr.Info('您正在使用跨语种复刻模式, instruct文本会被忽略') if prompt_wav is None: gr.Warning('您正在使用跨语种复刻模式, 请提供prompt音频') yield (target_sr, default_data) gr.Info('您正在使用跨语种复刻模式, 请确保合成文本和prompt文本为不同语言') # if in zero_shot cross_lingual, please make sure that prompt_text and prompt_wav meets requirements if mode_checkbox_group in ['3s极速复刻', '跨语种复刻']: if prompt_wav is None: gr.Warning('prompt音频为空,您是否忘记输入prompt音频?') yield (target_sr, default_data) if torchaudio.info(prompt_wav).sample_rate < prompt_sr: gr.Warning('prompt音频采样率{}低于{}'.format(torchaudio.info(prompt_wav).sample_rate, prompt_sr)) yield (target_sr, default_data) # sft mode only use sft_dropdown if mode_checkbox_group in ['预训练音色']: if instruct_text != '' or prompt_wav is not None or prompt_text != '': gr.Info('您正在使用预训练音色模式,prompt文本/prompt音频/instruct文本会被忽略!') # zero_shot mode only use prompt_wav prompt text if mode_checkbox_group in ['3s极速复刻']: if prompt_text == '': gr.Warning('prompt文本为空,您是否忘记输入prompt文本?') yield (target_sr, default_data) if instruct_text != '': gr.Info('您正在使用3s极速复刻模式,预训练音色/instruct文本会被忽略!') info = torchaudio.info(prompt_wav) if info.num_frames / info.sample_rate > 10: gr.Warning('请限制输入音频在10s内,避免推理效果过低') yield (target_sr, default_data) if mode_checkbox_group == '预训练音色': logging.info('get sft inference request') set_all_random_seed(seed) for i in cosyvoice.inference_sft(tts_text, sft_dropdown, stream=stream, speed=speed): yield (target_sr, i['tts_speech'].numpy().flatten()) elif mode_checkbox_group == '3s极速复刻': logging.info('get zero_shot inference request') prompt_speech_16k = postprocess(load_wav(prompt_wav, prompt_sr)) set_all_random_seed(seed) for i in cosyvoice.inference_zero_shot(tts_text, prompt_text, prompt_speech_16k, stream=stream, speed=speed): yield (target_sr, i['tts_speech'].numpy().flatten()) elif mode_checkbox_group == '跨语种复刻': logging.info('get cross_lingual inference request') prompt_speech_16k = postprocess(load_wav(prompt_wav, prompt_sr)) set_all_random_seed(seed) for i in cosyvoice.inference_cross_lingual(tts_text, prompt_speech_16k, stream=stream, speed=speed): yield (target_sr, i['tts_speech'].numpy().flatten()) else: logging.info('get instruct inference request') logging.info('get instruct inference request') prompt_speech_16k = postprocess(load_wav(prompt_wav, prompt_sr)) set_all_random_seed(seed) for i in cosyvoice.inference_instruct2(tts_text, instruct_text, prompt_speech_16k, stream=stream, speed=speed): yield (target_sr, i['tts_speech'].numpy().flatten()) def main(): with gr.Blocks() as demo: gr.Markdown("### 代码库 [CosyVoice](https://github.com/FunAudioLLM/CosyVoice) \ 预训练模型 [CosyVoice2-0.5B](https://www.modelscope.cn/models/iic/CosyVoice2-0.5B) \ [CosyVoice-300M](https://www.modelscope.cn/models/iic/CosyVoice-300M) \ [CosyVoice-300M-Instruct](https://www.modelscope.cn/models/iic/CosyVoice-300M-Instruct) \ [CosyVoice-300M-SFT](https://www.modelscope.cn/models/iic/CosyVoice-300M-SFT)") gr.Markdown("#### 请输入需要合成的文本,选择推理模式,并按照提示步骤进行操作") tts_text = gr.Textbox(label="输入合成文本", lines=1, value="CosyVoice迎来全面升级,提供更准、更稳、更快、 更好的语音生成能力。CosyVoice is undergoing a comprehensive upgrade, providing more accurate, stable, faster, and better voice generation capabilities.") with gr.Row(): mode_checkbox_group = gr.Radio(choices=inference_mode_list, label='选择推理模式', value=inference_mode_list[0]) instruction_text = gr.Text(label="操作步骤", value=instruct_dict[inference_mode_list[0]], scale=0.5) stream = gr.Radio(choices=stream_mode_list, label='是否流式推理', value=stream_mode_list[0][1]) with gr.Column(scale=0.25): seed_button = gr.Button(value="\U0001F3B2") seed = gr.Number(value=0, label="随机推理种子") with gr.Row(): prompt_wav_upload = gr.Audio(sources='upload', type='filepath', label='选择prompt音频文件,注意采样率不低于16khz') prompt_wav_record = gr.Audio(sources='microphone', type='filepath', label='录制prompt音频文件') prompt_text = gr.Textbox(label="prompt文本", lines=1, placeholder="请输入prompt文本,支持自动识别,您可以自行修正识别结果...", value='') instruct_text = gr.Textbox(label="输入instruct文本", lines=1, placeholder="请输入instruct文本.例如:用四川话说这句话。", value='') generate_button = gr.Button("生成音频") audio_output = gr.Audio(label="合成音频", autoplay=True, streaming=True) seed_button.click(generate_seed, inputs=[], outputs=seed) generate_button.click(generate_audio, inputs=[tts_text, mode_checkbox_group, prompt_text, prompt_wav_upload, prompt_wav_record, instruct_text, seed, stream], outputs=[audio_output]) mode_checkbox_group.change(fn=change_instruction, inputs=[mode_checkbox_group], outputs=[instruction_text]) prompt_wav_upload.change(fn=prompt_wav_recognition, inputs=[prompt_wav_upload], outputs=[prompt_text]) prompt_wav_record.change(fn=prompt_wav_recognition, inputs=[prompt_wav_record], outputs=[prompt_text]) demo.queue(max_size=4, default_concurrency_limit=2).launch(server_port=50000) if __name__ == '__main__': load_jit = True if os.environ.get('jit') == '1' else False load_onnx = True if os.environ.get('onnx') == '1' else False load_trt = True if os.environ.get('trt') == '1' else False logging.info('cosyvoice args load_jit {} load_onnx {} load_trt {}'.format(load_jit, load_onnx, load_trt)) cosyvoice = CosyVoice2('pretrained_models/CosyVoice2-0.5B', load_jit=load_jit, load_onnx=load_onnx, load_trt=load_trt) sft_spk = cosyvoice.list_avaliable_spks() prompt_speech_16k = load_wav('zero_shot_prompt.wav', 16000) for stream in [True, False]: for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=stream)): continue prompt_sr, target_sr = 16000, 24000 default_data = np.zeros(target_sr) model_dir = "iic/SenseVoiceSmall" asr_model = AutoModel( model=model_dir, disable_update=True, log_level='DEBUG', device="cuda:0") main()