import os import uuid from dotenv import load_dotenv from inference.core.utils.environment import safe_split_value, str2bool load_dotenv(os.getcwd() + "/.env") # The project name, default is "roboflow-platform" PROJECT = os.getenv("PROJECT", "roboflow-platform") # Allow numpy input, default is True ALLOW_NUMPY_INPUT = str2bool(os.getenv("ALLOW_NUMPY_INPUT", True)) # List of allowed origins ALLOW_ORIGINS = os.getenv("ALLOW_ORIGINS", "") ALLOW_ORIGINS = ALLOW_ORIGINS.split(",") # Base URL for the API API_BASE_URL = os.getenv( "API_BASE_URL", ( "https://api.roboflow.com" if PROJECT == "roboflow-platform" else "https://api.roboflow.one" ), ) # Debug flag for the API, default is False API_DEBUG = os.getenv("API_DEBUG", False) # API key, default is None API_KEY_ENV_NAMES = ["ROBOFLOW_API_KEY", "API_KEY"] API_KEY = os.getenv(API_KEY_ENV_NAMES[0], None) or os.getenv(API_KEY_ENV_NAMES[1], None) # AWS access key ID, default is None AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID", None) # AWS secret access key, default is None AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY", None) COGVLM_LOAD_4BIT = str2bool(os.getenv("COGVLM_LOAD_4BIT", True)) COGVLM_LOAD_8BIT = str2bool(os.getenv("COGVLM_LOAD_8BIT", False)) COGVLM_VERSION_ID = os.getenv("COGVLM_VERSION_ID", "cogvlm-chat-hf") # CLIP version ID, default is "ViT-B-16" CLIP_VERSION_ID = os.getenv("CLIP_VERSION_ID", "ViT-B-16") # CLIP model ID CLIP_MODEL_ID = f"clip/{CLIP_VERSION_ID}" # Gaze version ID, default is "L2CS" GAZE_VERSION_ID = os.getenv("GAZE_VERSION_ID", "L2CS") # Gaze model ID GAZE_MODEL_ID = f"gaze/{CLIP_VERSION_ID}" # Maximum batch size for GAZE, default is 8 GAZE_MAX_BATCH_SIZE = int(os.getenv("GAZE_MAX_BATCH_SIZE", 8)) # If true, this will store a non-verbose version of the inference request and repsonse in the cache TINY_CACHE = str2bool(os.getenv("TINY_CACHE", True)) # Maximum batch size for CLIP, default is 8 CLIP_MAX_BATCH_SIZE = int(os.getenv("CLIP_MAX_BATCH_SIZE", 8)) # Class agnostic NMS flag, default is False CLASS_AGNOSTIC_NMS_ENV = "CLASS_AGNOSTIC_NMS" DEFAULT_CLASS_AGNOSTIC_NMS = False CLASS_AGNOSTIC_NMS = str2bool( os.getenv(CLASS_AGNOSTIC_NMS_ENV, DEFAULT_CLASS_AGNOSTIC_NMS) ) # Confidence threshold, default is 50% CONFIDENCE_ENV = "CONFIDENCE" DEFAULT_CONFIDENCE = 0.4 CONFIDENCE = float(os.getenv(CONFIDENCE_ENV, DEFAULT_CONFIDENCE)) # Flag to enable core models, default is True CORE_MODELS_ENABLED = str2bool(os.getenv("CORE_MODELS_ENABLED", True)) # Flag to enable CLIP core model, default is True CORE_MODEL_CLIP_ENABLED = str2bool(os.getenv("CORE_MODEL_CLIP_ENABLED", True)) # Flag to enable SAM core model, default is True CORE_MODEL_SAM_ENABLED = str2bool(os.getenv("CORE_MODEL_SAM_ENABLED", True)) # Flag to enable GAZE core model, default is True CORE_MODEL_GAZE_ENABLED = str2bool(os.getenv("CORE_MODEL_GAZE_ENABLED", True)) # Flag to enable DocTR core model, default is True CORE_MODEL_DOCTR_ENABLED = str2bool(os.getenv("CORE_MODEL_DOCTR_ENABLED", True)) # Flag to enable GROUNDINGDINO core model, default is True CORE_MODEL_GROUNDINGDINO_ENABLED = str2bool( os.getenv("CORE_MODEL_GROUNDINGDINO_ENABLED", True) ) # Flag to enable CogVLM core model, default is True CORE_MODEL_COGVLM_ENABLED = str2bool(os.getenv("CORE_MODEL_COGVLM_ENABLED", True)) # Flag to enable YOLO-World core model, default is True CORE_MODEL_YOLO_WORLD_ENABLED = str2bool( os.getenv("CORE_MODEL_YOLO_WORLD_ENABLED", True) ) # ID of host device, default is None DEVICE_ID = os.getenv("DEVICE_ID", None) # Flag to disable inference cache, default is False DISABLE_INFERENCE_CACHE = str2bool(os.getenv("DISABLE_INFERENCE_CACHE", False)) # Flag to disable auto-orientation preprocessing, default is False DISABLE_PREPROC_AUTO_ORIENT = str2bool(os.getenv("DISABLE_PREPROC_AUTO_ORIENT", False)) # Flag to disable contrast preprocessing, default is False DISABLE_PREPROC_CONTRAST = str2bool(os.getenv("DISABLE_PREPROC_CONTRAST", False)) # Flag to disable grayscale preprocessing, default is False DISABLE_PREPROC_GRAYSCALE = str2bool(os.getenv("DISABLE_PREPROC_GRAYSCALE", False)) # Flag to disable static crop preprocessing, default is False DISABLE_PREPROC_STATIC_CROP = str2bool(os.getenv("DISABLE_PREPROC_STATIC_CROP", False)) # Flag to disable version check, default is False DISABLE_VERSION_CHECK = str2bool(os.getenv("DISABLE_VERSION_CHECK", False)) # ElastiCache endpoint ELASTICACHE_ENDPOINT = os.environ.get( "ELASTICACHE_ENDPOINT", ( "roboflow-infer-prod.ljzegl.cfg.use2.cache.amazonaws.com:11211" if PROJECT == "roboflow-platform" else "roboflow-infer.ljzegl.cfg.use2.cache.amazonaws.com:11211" ), ) # Flag to enable byte track, default is False ENABLE_BYTE_TRACK = str2bool(os.getenv("ENABLE_BYTE_TRACK", False)) # Flag to enforce FPS, default is False ENFORCE_FPS = str2bool(os.getenv("ENFORCE_FPS", False)) MAX_FPS = os.getenv("MAX_FPS") if MAX_FPS is not None: MAX_FPS = int(MAX_FPS) # Flag to fix batch size, default is False FIX_BATCH_SIZE = str2bool(os.getenv("FIX_BATCH_SIZE", False)) # Host, default is "0.0.0.0" HOST = os.getenv("HOST", "0.0.0.0") # IoU threshold, default is 0.3 IOU_THRESHOLD_ENV = "IOU_THRESHOLD" DEFAULT_IOU_THRESHOLD = 0.3 IOU_THRESHOLD = float(os.getenv(IOU_THRESHOLD_ENV, DEFAULT_IOU_THRESHOLD)) # IP broadcast address, default is "127.0.0.1" IP_BROADCAST_ADDR = os.getenv("IP_BROADCAST_ADDR", "127.0.0.1") # IP broadcast port, default is 37020 IP_BROADCAST_PORT = int(os.getenv("IP_BROADCAST_PORT", 37020)) # Flag to enable JSON response, default is True JSON_RESPONSE = str2bool(os.getenv("JSON_RESPONSE", True)) # Lambda flag, default is False LAMBDA = str2bool(os.getenv("LAMBDA", False)) # Flag to enable legacy route, default is True LEGACY_ROUTE_ENABLED = str2bool(os.getenv("LEGACY_ROUTE_ENABLED", True)) # License server, default is None LICENSE_SERVER = os.getenv("LICENSE_SERVER", None) # Log level, default is "INFO" LOG_LEVEL = os.getenv("LOG_LEVEL", "WARNING") # Maximum number of active models, default is 8 MAX_ACTIVE_MODELS = int(os.getenv("MAX_ACTIVE_MODELS", 8)) # Maximum batch size, default is infinite MAX_BATCH_SIZE = os.getenv("MAX_BATCH_SIZE", None) if MAX_BATCH_SIZE is not None: MAX_BATCH_SIZE = int(MAX_BATCH_SIZE) else: MAX_BATCH_SIZE = float("inf") # Maximum number of candidates, default is 3000 MAX_CANDIDATES_ENV = "MAX_CANDIDATES" DEFAULT_MAX_CANDIDATES = 3000 MAX_CANDIDATES = int(os.getenv(MAX_CANDIDATES_ENV, DEFAULT_MAX_CANDIDATES)) # Maximum number of detections, default is 300 MAX_DETECTIONS_ENV = "MAX_DETECTIONS" DEFAULT_MAX_DETECTIONS = 300 MAX_DETECTIONS = int(os.getenv(MAX_DETECTIONS_ENV, DEFAULT_MAX_DETECTIONS)) # Loop interval for expiration of memory cache, default is 5 MEMORY_CACHE_EXPIRE_INTERVAL = int(os.getenv("MEMORY_CACHE_EXPIRE_INTERVAL", 5)) # Metrics enabled flag, default is True METRICS_ENABLED = str2bool(os.getenv("METRICS_ENABLED", True)) if LAMBDA: METRICS_ENABLED = False # Interval for metrics aggregation, default is 60 METRICS_INTERVAL = int(os.getenv("METRICS_INTERVAL", 60)) # URL for posting metrics to Roboflow API, default is "{API_BASE_URL}/inference-stats" METRICS_URL = os.getenv("METRICS_URL", f"{API_BASE_URL}/inference-stats") # Model cache directory, default is "/tmp/cache" MODEL_CACHE_DIR = os.getenv("MODEL_CACHE_DIR", "/tmp/cache") # Model ID, default is None MODEL_ID = os.getenv("MODEL_ID") # Enable jupyter notebook server route, default is False NOTEBOOK_ENABLED = str2bool(os.getenv("NOTEBOOK_ENABLED", False)) # Jupyter notebook password, default is "roboflow" NOTEBOOK_PASSWORD = os.getenv("NOTEBOOK_PASSWORD", "roboflow") # Jupyter notebook port, default is 9002 NOTEBOOK_PORT = int(os.getenv("NOTEBOOK_PORT", 9002)) # Number of workers, default is 1 NUM_WORKERS = int(os.getenv("NUM_WORKERS", 1)) ONNXRUNTIME_EXECUTION_PROVIDERS = os.getenv( "ONNXRUNTIME_EXECUTION_PROVIDERS", "[CUDAExecutionProvider,CPUExecutionProvider]" ) # Port, default is 9001 PORT = int(os.getenv("PORT", 9001)) # Profile flag, default is False PROFILE = str2bool(os.getenv("PROFILE", False)) # Redis host, default is None REDIS_HOST = os.getenv("REDIS_HOST", None) # Redis port, default is 6379 REDIS_PORT = int(os.getenv("REDIS_PORT", 6379)) REDIS_SSL = str2bool(os.getenv("REDIS_SSL", False)) REDIS_TIMEOUT = float(os.getenv("REDIS_TIMEOUT", 2.0)) # Required ONNX providers, default is None REQUIRED_ONNX_PROVIDERS = safe_split_value(os.getenv("REQUIRED_ONNX_PROVIDERS", None)) # Roboflow server UUID ROBOFLOW_SERVER_UUID = os.getenv("ROBOFLOW_SERVER_UUID", str(uuid.uuid4())) # Roboflow service secret, default is None ROBOFLOW_SERVICE_SECRET = os.getenv("ROBOFLOW_SERVICE_SECRET", None) # Maximum embedding cache size for SAM, default is 10 SAM_MAX_EMBEDDING_CACHE_SIZE = int(os.getenv("SAM_MAX_EMBEDDING_CACHE_SIZE", 10)) # SAM version ID, default is "vit_h" SAM_VERSION_ID = os.getenv("SAM_VERSION_ID", "vit_h") # Device ID, default is "sample-device-id" INFERENCE_SERVER_ID = os.getenv("INFERENCE_SERVER_ID", None) # Stream ID, default is None STREAM_ID = os.getenv("STREAM_ID") try: STREAM_ID = int(STREAM_ID) except (TypeError, ValueError): pass # Tags used for device management TAGS = safe_split_value(os.getenv("TAGS", "")) # TensorRT cache path, default is MODEL_CACHE_DIR TENSORRT_CACHE_PATH = os.getenv("TENSORRT_CACHE_PATH", MODEL_CACHE_DIR) # Set TensorRT cache path os.environ["ORT_TENSORRT_CACHE_PATH"] = TENSORRT_CACHE_PATH # Version check mode, one of "once" or "continuous", default is "once" VERSION_CHECK_MODE = os.getenv("VERSION_CHECK_MODE", "once") # Metlo key, default is None METLO_KEY = os.getenv("METLO_KEY", None) # Core model bucket CORE_MODEL_BUCKET = os.getenv( "CORE_MODEL_BUCKET", ( "roboflow-core-model-prod" if PROJECT == "roboflow-platform" else "roboflow-core-model-staging" ), ) # Inference bucket INFER_BUCKET = os.getenv( "INFER_BUCKET", ( "roboflow-infer-prod" if PROJECT == "roboflow-platform" else "roboflow-infer-staging" ), ) ACTIVE_LEARNING_ENABLED = str2bool(os.getenv("ACTIVE_LEARNING_ENABLED", True)) ACTIVE_LEARNING_TAGS = safe_split_value(os.getenv("ACTIVE_LEARNING_TAGS", None)) # Number inflight async tasks for async model manager NUM_PARALLEL_TASKS = int(os.getenv("NUM_PARALLEL_TASKS", 512)) STUB_CACHE_SIZE = int(os.getenv("STUB_CACHE_SIZE", 256)) # New stream interface variables PREDICTIONS_QUEUE_SIZE = int( os.getenv("INFERENCE_PIPELINE_PREDICTIONS_QUEUE_SIZE", 512) ) RESTART_ATTEMPT_DELAY = int(os.getenv("INFERENCE_PIPELINE_RESTART_ATTEMPT_DELAY", 1)) DEFAULT_BUFFER_SIZE = int(os.getenv("VIDEO_SOURCE_BUFFER_SIZE", "64")) DEFAULT_ADAPTIVE_MODE_STREAM_PACE_TOLERANCE = float( os.getenv("VIDEO_SOURCE_ADAPTIVE_MODE_STREAM_PACE_TOLERANCE", "0.1") ) DEFAULT_ADAPTIVE_MODE_READER_PACE_TOLERANCE = float( os.getenv("VIDEO_SOURCE_ADAPTIVE_MODE_READER_PACE_TOLERANCE", "5.0") ) DEFAULT_MINIMUM_ADAPTIVE_MODE_SAMPLES = int( os.getenv("VIDEO_SOURCE_MINIMUM_ADAPTIVE_MODE_SAMPLES", "10") ) DEFAULT_MAXIMUM_ADAPTIVE_FRAMES_DROPPED_IN_ROW = int( os.getenv("VIDEO_SOURCE_MAXIMUM_ADAPTIVE_FRAMES_DROPPED_IN_ROW", "16") ) NUM_CELERY_WORKERS = os.getenv("NUM_CELERY_WORKERS", 4) CELERY_LOG_LEVEL = os.getenv("CELERY_LOG_LEVEL", "WARNING") LOCAL_INFERENCE_API_URL = os.getenv("LOCAL_INFERENCE_API_URL", "http://127.0.0.1:9001") HOSTED_DETECT_URL = ( "https://detect.roboflow.com" if PROJECT == "roboflow-platform" else "https://lambda-object-detection.staging.roboflow.com" ) HOSTED_INSTANCE_SEGMENTATION_URL = ( "https://outline.roboflow.com" if PROJECT == "roboflow-platform" else "https://lambda-instance-segmentation.staging.roboflow.com" ) HOSTED_CLASSIFICATION_URL = ( "https://classify.roboflow.com" if PROJECT == "roboflow-platform" else "https://lambda-classification.staging.roboflow.com" ) HOSTED_CORE_MODEL_URL = ( "https://infer.roboflow.com" if PROJECT == "roboflow-platform" else "https://3hkaykeh3j.execute-api.us-east-1.amazonaws.com" ) DISABLE_WORKFLOW_ENDPOINTS = str2bool(os.getenv("DISABLE_WORKFLOW_ENDPOINTS", False)) WORKFLOWS_STEP_EXECUTION_MODE = os.getenv("WORKFLOWS_STEP_EXECUTION_MODE", "remote") WORKFLOWS_REMOTE_API_TARGET = os.getenv("WORKFLOWS_REMOTE_API_TARGET", "hosted") WORKFLOWS_MAX_CONCURRENT_STEPS = int(os.getenv("WORKFLOWS_MAX_CONCURRENT_STEPS", "8")) WORKFLOWS_REMOTE_EXECUTION_MAX_STEP_BATCH_SIZE = int( os.getenv("WORKFLOWS_REMOTE_EXECUTION_MAX_STEP_BATCH_SIZE", "1") ) WORKFLOWS_REMOTE_EXECUTION_MAX_STEP_CONCURRENT_REQUESTS = int( os.getenv("WORKFLOWS_REMOTE_EXECUTION_MAX_STEP_CONCURRENT_REQUESTS", "8") )