from typing import List, Tuple import numpy as np from inference.core.models.instance_segmentation_base import ( InstanceSegmentationBaseOnnxRoboflowInferenceModel, ) class YOLOv8InstanceSegmentation(InstanceSegmentationBaseOnnxRoboflowInferenceModel): """YOLOv8 Instance Segmentation ONNX Inference Model. This class is responsible for performing instance segmentation using the YOLOv8 model with ONNX runtime. Attributes: weights_file (str): Path to the ONNX weights file. Methods: predict: Performs inference on the given image using the ONNX session. """ @property def weights_file(self) -> str: """Gets the weights file for the YOLOv8 model. Returns: str: Path to the ONNX weights file. """ return "weights.onnx" def predict(self, img_in: np.ndarray, **kwargs) -> Tuple[np.ndarray, np.ndarray]: """Performs inference on the given image using the ONNX session. Args: img_in (np.ndarray): Input image as a NumPy array. Returns: Tuple[np.ndarray, np.ndarray]: Tuple containing two NumPy arrays representing the predictions and protos. The predictions include boxes, confidence scores, class confidence scores, and masks. """ predictions = self.onnx_session.run(None, {self.input_name: img_in}) protos = predictions[1] predictions = predictions[0] predictions = predictions.transpose(0, 2, 1) boxes = predictions[:, :, :4] class_confs = predictions[:, :, 4:-32] confs = np.expand_dims(np.max(class_confs, axis=2), axis=2) masks = predictions[:, :, -32:] predictions = np.concatenate([boxes, confs, class_confs, masks], axis=2) return predictions, protos