import json import urllib.parse from enum import Enum from typing import Any, Callable, Dict, List, Optional, Tuple, Type, Union import requests from requests import Response from requests_toolbelt import MultipartEncoder from inference.core import logger from inference.core.cache import cache from inference.core.entities.types import ( DatasetID, ModelType, TaskType, VersionID, WorkspaceID, ) from inference.core.env import API_BASE_URL from inference.core.exceptions import ( MalformedRoboflowAPIResponseError, MalformedWorkflowResponseError, MissingDefaultModelError, RoboflowAPIConnectionError, RoboflowAPIIAlreadyAnnotatedError, RoboflowAPIIAnnotationRejectionError, RoboflowAPIImageUploadRejectionError, RoboflowAPINotAuthorizedError, RoboflowAPINotNotFoundError, RoboflowAPIUnsuccessfulRequestError, WorkspaceLoadError, ) from inference.core.utils.requests import api_key_safe_raise_for_status from inference.core.utils.url_utils import wrap_url MODEL_TYPE_DEFAULTS = { "object-detection": "yolov5v2s", "instance-segmentation": "yolact", "classification": "vit", "keypoint-detection": "yolov8n", } PROJECT_TASK_TYPE_KEY = "project_task_type" MODEL_TYPE_KEY = "model_type" NOT_FOUND_ERROR_MESSAGE = ( "Could not find requested Roboflow resource. Check that the provided dataset and " "version are correct, and check that the provided Roboflow API key has the correct permissions." ) def raise_from_lambda( inner_error: Exception, exception_type: Type[Exception], message: str ) -> None: raise exception_type(message) from inner_error DEFAULT_ERROR_HANDLERS = { 401: lambda e: raise_from_lambda( e, RoboflowAPINotAuthorizedError, "Unauthorized access to roboflow API - check API key. Visit " "https://docs.roboflow.com/api-reference/authentication#retrieve-an-api-key to learn how to retrieve one.", ), 404: lambda e: raise_from_lambda( e, RoboflowAPINotNotFoundError, NOT_FOUND_ERROR_MESSAGE ), } def wrap_roboflow_api_errors( http_errors_handlers: Optional[ Dict[int, Callable[[Union[requests.exceptions.HTTPError]], None]] ] = None, ) -> callable: def decorator(function: callable) -> callable: def wrapper(*args, **kwargs) -> Any: try: return function(*args, **kwargs) except (requests.exceptions.ConnectionError, ConnectionError) as error: raise RoboflowAPIConnectionError( "Could not connect to Roboflow API." ) from error except requests.exceptions.HTTPError as error: user_handler_override = ( http_errors_handlers if http_errors_handlers is not None else {} ) status_code = error.response.status_code default_handler = DEFAULT_ERROR_HANDLERS.get(status_code) error_handler = user_handler_override.get(status_code, default_handler) if error_handler is not None: error_handler(error) raise RoboflowAPIUnsuccessfulRequestError( f"Unsuccessful request to Roboflow API with response code: {status_code}" ) from error except requests.exceptions.InvalidJSONError as error: raise MalformedRoboflowAPIResponseError( "Could not decode JSON response from Roboflow API." ) from error return wrapper return decorator @wrap_roboflow_api_errors() def get_roboflow_workspace(api_key: str) -> WorkspaceID: api_url = _add_params_to_url( url=f"{API_BASE_URL}/", params=[("api_key", api_key), ("nocache", "true")], ) api_key_info = _get_from_url(url=api_url) workspace_id = api_key_info.get("workspace") if workspace_id is None: raise WorkspaceLoadError(f"Empty workspace encountered, check your API key.") return workspace_id @wrap_roboflow_api_errors() def get_roboflow_dataset_type( api_key: str, workspace_id: WorkspaceID, dataset_id: DatasetID ) -> TaskType: api_url = _add_params_to_url( url=f"{API_BASE_URL}/{workspace_id}/{dataset_id}", params=[("api_key", api_key), ("nocache", "true")], ) dataset_info = _get_from_url(url=api_url) project_task_type = dataset_info.get("project", {}) if "type" not in project_task_type: logger.warning( f"Project task type not defined for workspace={workspace_id} and dataset={dataset_id}, defaulting " f"to object-detection." ) return project_task_type.get("type", "object-detection") @wrap_roboflow_api_errors( http_errors_handlers={ 500: lambda e: raise_from_lambda( e, RoboflowAPINotNotFoundError, NOT_FOUND_ERROR_MESSAGE ) # this is temporary solution, empirically checked that backend API responds HTTP 500 on incorrect version. # TO BE FIXED at backend, otherwise this error handling may overshadow existing backend problems. } ) def get_roboflow_model_type( api_key: str, workspace_id: WorkspaceID, dataset_id: DatasetID, version_id: VersionID, project_task_type: ModelType, ) -> ModelType: api_url = _add_params_to_url( url=f"{API_BASE_URL}/{workspace_id}/{dataset_id}/{version_id}", params=[("api_key", api_key), ("nocache", "true")], ) version_info = _get_from_url(url=api_url) model_type = version_info["version"] if "modelType" not in model_type: if project_task_type not in MODEL_TYPE_DEFAULTS: raise MissingDefaultModelError( f"Could not set default model for {project_task_type}" ) logger.warning( f"Model type not defined - using default for {project_task_type} task." ) return model_type.get("modelType", MODEL_TYPE_DEFAULTS[project_task_type]) class ModelEndpointType(Enum): ORT = "ort" CORE_MODEL = "core_model" @wrap_roboflow_api_errors() def get_roboflow_model_data( api_key: str, model_id: str, endpoint_type: ModelEndpointType, device_id: str, ) -> dict: api_data_cache_key = f"roboflow_api_data:{endpoint_type.value}:{model_id}" api_data = cache.get(api_data_cache_key) if api_data is not None: logger.debug(f"Loaded model data from cache with key: {api_data_cache_key}.") return api_data else: params = [ ("nocache", "true"), ("device", device_id), ("dynamic", "true"), ] if api_key is not None: params.append(("api_key", api_key)) api_url = _add_params_to_url( url=f"{API_BASE_URL}/{endpoint_type.value}/{model_id}", params=params, ) api_data = _get_from_url(url=api_url) cache.set( api_data_cache_key, api_data, expire=10, ) logger.debug( f"Loaded model data from Roboflow API and saved to cache with key: {api_data_cache_key}." ) return api_data @wrap_roboflow_api_errors() def get_roboflow_active_learning_configuration( api_key: str, workspace_id: WorkspaceID, dataset_id: DatasetID, ) -> dict: api_url = _add_params_to_url( url=f"{API_BASE_URL}/{workspace_id}/{dataset_id}/active_learning", params=[("api_key", api_key)], ) return _get_from_url(url=api_url) @wrap_roboflow_api_errors() def register_image_at_roboflow( api_key: str, dataset_id: DatasetID, local_image_id: str, image_bytes: bytes, batch_name: str, tags: Optional[List[str]] = None, ) -> dict: url = f"{API_BASE_URL}/dataset/{dataset_id}/upload" params = [ ("api_key", api_key), ("batch", batch_name), ] tags = tags if tags is not None else [] for tag in tags: params.append(("tag", tag)) wrapped_url = wrap_url(_add_params_to_url(url=url, params=params)) m = MultipartEncoder( fields={ "name": f"{local_image_id}.jpg", "file": ("imageToUpload", image_bytes, "image/jpeg"), } ) response = requests.post( url=wrapped_url, data=m, headers={"Content-Type": m.content_type}, ) api_key_safe_raise_for_status(response=response) parsed_response = response.json() if not parsed_response.get("duplicate") and not parsed_response.get("success"): raise RoboflowAPIImageUploadRejectionError( f"Server rejected image: {parsed_response}" ) return parsed_response @wrap_roboflow_api_errors( http_errors_handlers={ 409: lambda e: raise_from_lambda( e, RoboflowAPIIAlreadyAnnotatedError, "Given datapoint already has annotation.", ) } ) def annotate_image_at_roboflow( api_key: str, dataset_id: DatasetID, local_image_id: str, roboflow_image_id: str, annotation_content: str, annotation_file_type: str, is_prediction: bool = True, ) -> dict: url = f"{API_BASE_URL}/dataset/{dataset_id}/annotate/{roboflow_image_id}" params = [ ("api_key", api_key), ("name", f"{local_image_id}.{annotation_file_type}"), ("prediction", str(is_prediction).lower()), ] wrapped_url = wrap_url(_add_params_to_url(url=url, params=params)) response = requests.post( wrapped_url, data=annotation_content, headers={"Content-Type": "text/plain"}, ) api_key_safe_raise_for_status(response=response) parsed_response = response.json() if "error" in parsed_response or not parsed_response.get("success"): raise RoboflowAPIIAnnotationRejectionError( f"Failed to save annotation for {roboflow_image_id}. API response: {parsed_response}" ) return parsed_response @wrap_roboflow_api_errors() def get_roboflow_labeling_batches( api_key: str, workspace_id: WorkspaceID, dataset_id: str ) -> dict: api_url = _add_params_to_url( url=f"{API_BASE_URL}/{workspace_id}/{dataset_id}/batches", params=[("api_key", api_key)], ) return _get_from_url(url=api_url) @wrap_roboflow_api_errors() def get_roboflow_labeling_jobs( api_key: str, workspace_id: WorkspaceID, dataset_id: str ) -> dict: api_url = _add_params_to_url( url=f"{API_BASE_URL}/{workspace_id}/{dataset_id}/jobs", params=[("api_key", api_key)], ) return _get_from_url(url=api_url) @wrap_roboflow_api_errors() def get_workflow_specification( api_key: str, workspace_id: WorkspaceID, workflow_name: str, ) -> dict: api_url = _add_params_to_url( url=f"{API_BASE_URL}/{workspace_id}/workflows/{workflow_name}", params=[("api_key", api_key)], ) response = _get_from_url(url=api_url) if "workflow" not in response or "config" not in response["workflow"]: raise MalformedWorkflowResponseError( f"Could not found workflow specification in API response" ) try: return json.loads(response["workflow"]["config"]) except (ValueError, TypeError) as error: raise MalformedWorkflowResponseError( "Could not decode workflow specification in Roboflow API response" ) from error @wrap_roboflow_api_errors() def get_from_url( url: str, json_response: bool = True, ) -> Union[Response, dict]: return _get_from_url(url=url, json_response=json_response) def _get_from_url(url: str, json_response: bool = True) -> Union[Response, dict]: response = requests.get(wrap_url(url)) api_key_safe_raise_for_status(response=response) if json_response: return response.json() return response def _add_params_to_url(url: str, params: List[Tuple[str, str]]) -> str: if len(params) == 0: return url params_chunks = [ f"{name}={urllib.parse.quote_plus(value)}" for name, value in params ] parameters_string = "&".join(params_chunks) return f"{url}?{parameters_string}"