from typing import Tuple import numpy as np from inference.core.exceptions import ModelArtefactError from inference.core.models.keypoints_detection_base import ( KeypointsDetectionBaseOnnxRoboflowInferenceModel, ) from inference.core.models.utils.keypoints import superset_keypoints_count class YOLOv8KeypointsDetection(KeypointsDetectionBaseOnnxRoboflowInferenceModel): """Roboflow ONNX keypoints detection model (Implements an object detection specific infer method). This class is responsible for performing keypoints detection using the YOLOv8 model with ONNX runtime. Attributes: weights_file (str): Path to the ONNX weights file. Methods: predict: Performs object detection on the given image using the ONNX session. """ @property def weights_file(self) -> str: """Gets the weights file for the YOLOv8 model. Returns: str: Path to the ONNX weights file. """ return "weights.onnx" def predict(self, img_in: np.ndarray, **kwargs) -> Tuple[np.ndarray, ...]: """Performs object detection on the given image using the ONNX session. Args: img_in (np.ndarray): Input image as a NumPy array. Returns: Tuple[np.ndarray]: NumPy array representing the predictions, including boxes, confidence scores, and class confidence scores. """ predictions = self.onnx_session.run(None, {self.input_name: img_in})[0] predictions = predictions.transpose(0, 2, 1) boxes = predictions[:, :, :4] number_of_classes = len(self.get_class_names) class_confs = predictions[:, :, 4 : 4 + number_of_classes] keypoints_detections = predictions[:, :, 4 + number_of_classes :] confs = np.expand_dims(np.max(class_confs, axis=2), axis=2) bboxes_predictions = np.concatenate( [boxes, confs, class_confs, keypoints_detections], axis=2 ) return (bboxes_predictions,) def keypoints_count(self) -> int: """Returns the number of keypoints in the model.""" if self.keypoints_metadata is None: raise ModelArtefactError("Keypoints metadata not available.") return superset_keypoints_count(self.keypoints_metadata)