debug: False root_data_dir: ./runs checkpoint_path: global_seed: 42 inference: input_dir: ddim: 25 cfg: 6 seed: ${global_seed} precision: fp16 export_glb: True fast_unwrap: False decimate: 100000 mc_resolution: 256 batch_size: 4096 remesh: False image_height: 518 image_width: 518 model: class_name: models.primsdf.PrimSDF num_prims: 2048 dim_feat: 6 prim_shape: 8 init_scale: 0.05 # useless if auto_scale_init == True sdf2alpha_var: 0.005 auto_scale_init: True init_sampling: uniform vae: class_name: models.vae3d_dib.VAE in_channels: ${model.dim_feat} latent_channels: 1 out_channels: ${model.vae.in_channels} down_channels: [32, 256] mid_attention: True up_channels: [256, 32] layers_per_block: 2 gradient_checkpointing: False vae_checkpoint_path: conditioner: class_name: models.conditioner.image.ImageConditioner num_prims: ${model.num_prims} dim_feat: ${model.dim_feat} prim_shape: ${model.prim_shape} sample_view: False encoder_config: class_name: models.conditioner.image_dinov2.Dinov2Wrapper model_name: dinov2_vitb14_reg freeze: True generator: class_name: models.dit_crossattn.DiT seq_length: ${model.num_prims} in_channels: 68 # equals to model.vae.latent_channels * latent_dim^3 condition_channels: 768 hidden_size: 1152 depth: 28 num_heads: 16 attn_proj_bias: True cond_drop_prob: 0.1 gradient_checkpointing: False latent_nf: 1.0 latent_mean: [ 0.0442, -0.0029, -0.0425, -0.0043, -0.4086, -0.2906, -0.7002, -0.0852, -0.4446, -0.6896, -0.7344, -0.3524, -0.5488, -0.4313, -1.1715, -0.0875, -0.6131, -0.3924, -0.7335, -0.3749, 0.4658, -0.0236, 0.8362, 0.3388, 0.0188, 0.5988, -0.1853, 1.1579, 0.6240, 0.0758, 0.9641, 0.6586, 0.6260, 0.2384, 0.7798, 0.8297, -0.6543, -0.4441, -1.3887, -0.0393, -0.9008, -0.8616, -1.7434, -0.1328, -0.8119, -0.8225, -1.8533, -0.0444, -1.0510, -0.5158, -1.1907, -0.5265, 0.2832, 0.6037, 0.5981, 0.5461, 0.4366, 0.4144, 0.7219, 0.5722, 0.5937, 0.5598, 0.9414, 0.7419, 0.2102, 0.3388, 0.4501, 0.5166] latent_std: [0.0219, 0.3707, 0.3911, 0.3610, 0.7549, 0.7909, 0.9691, 0.9193, 0.8218, 0.9389, 1.1785, 1.0254, 0.6376, 0.6568, 0.7892, 0.8468, 0.8775, 0.7920, 0.9037, 0.9329, 0.9196, 1.1123, 1.3041, 1.0955, 1.2727, 1.6565, 1.8502, 1.7006, 0.8973, 1.0408, 1.2034, 1.2703, 1.0373, 1.0486, 1.0716, 0.9746, 0.7088, 0.8685, 1.0030, 0.9504, 1.0410, 1.3033, 1.5368, 1.4386, 0.6142, 0.6887, 0.9085, 0.9903, 1.0190, 0.9302, 1.0121, 0.9964, 1.1474, 1.2729, 1.4627, 1.1404, 1.3713, 1.6692, 1.8424, 1.5047, 1.1356, 1.2369, 1.3554, 1.1848, 1.1319, 1.0822, 1.1972, 0.9916] diffusion: timestep_respacing: noise_schedule: squaredcos_cap_v2 diffusion_steps: 1000 parameterization: v rm: volradius: 10000.0 dt: 1.0 optimizer: class_name: torch.optim.AdamW lr: 0.0001 weight_decay: 0 scheduler: class_name: dva.scheduler.CosineWarmupScheduler warmup_iters: 3000 max_iters: 200000 train: batch_size: 8 n_workers: 4 n_epochs: 1000 log_every_n_steps: 50 summary_every_n_steps: 10000 ckpt_every_n_steps: 10000 amp: False precision: tf32 tag: 3dtopia-xl-sview output_dir: ${root_data_dir}/inference/${tag}