3DTopia-XL / utils /uv_unwrap.py
FrozenBurning
Update fast uv unwrap
cb029d0
raw
history blame
25.7 kB
import math
from typing import Tuple
import torch
import torch.nn.functional as F
from jaxtyping import Bool, Float, Integer, Int, Num
from torch import Tensor
def tri_winding(tri: Float[Tensor, "*B 3 2"]) -> Float[Tensor, "*B 3 3"]:
# One pad for determinant
tri_sq = F.pad(tri, (0, 1), "constant", 1.0)
det_tri = torch.det(tri_sq)
tri_rev = torch.cat(
(tri_sq[..., 0:1, :], tri_sq[..., 2:3, :], tri_sq[..., 1:2, :]), -2
)
tri_sq[det_tri < 0] = tri_rev[det_tri < 0]
return tri_sq
def triangle_intersection_2d(
t1: Float[Tensor, "*B 3 2"],
t2: Float[Tensor, "*B 3 2"],
eps=1e-12,
) -> Float[Tensor, "*B"]: # noqa: F821
"""Returns True if triangles collide, False otherwise"""
def chk_edge(x: Float[Tensor, "*B 3 3"]) -> Bool[Tensor, "*B"]: # noqa: F821
logdetx = torch.logdet(x.double())
if eps is None:
return ~torch.isfinite(logdetx)
return ~(torch.isfinite(logdetx) & (logdetx > math.log(eps)))
t1s = tri_winding(t1)
t2s = tri_winding(t2)
# Assume the triangles do not collide in the begging
ret = torch.zeros(t1.shape[0], dtype=torch.bool, device=t1.device)
for i in range(3):
edge = torch.roll(t1s, i, dims=1)[:, :2, :]
# Check if all points of triangle 2 lay on the external side of edge E.
# If this is the case the triangle do not collide
upd = (
chk_edge(torch.cat((edge, t2s[:, 0:1]), 1))
& chk_edge(torch.cat((edge, t2s[:, 1:2]), 1))
& chk_edge(torch.cat((edge, t2s[:, 2:3]), 1))
)
# Here no collision is still True due to inversion
ret = ret | upd
for i in range(3):
edge = torch.roll(t2s, i, dims=1)[:, :2, :]
upd = (
chk_edge(torch.cat((edge, t1s[:, 0:1]), 1))
& chk_edge(torch.cat((edge, t1s[:, 1:2]), 1))
& chk_edge(torch.cat((edge, t1s[:, 2:3]), 1))
)
# Here no collision is still True due to inversion
ret = ret | upd
return ~ret # Do the inversion
def dot(x, y, dim=-1):
return torch.sum(x * y, dim, keepdim=True)
def compute_vertex_normal(v_pos, t_pos_idx):
i0 = t_pos_idx[:, 0]
i1 = t_pos_idx[:, 1]
i2 = t_pos_idx[:, 2]
v0 = v_pos[i0, :]
v1 = v_pos[i1, :]
v2 = v_pos[i2, :]
face_normals = torch.cross(v1 - v0, v2 - v0, dim=-1)
# Splat face normals to vertices
v_nrm = torch.zeros_like(v_pos)
v_nrm.scatter_add_(0, i0[:, None].repeat(1, 3), face_normals)
v_nrm.scatter_add_(0, i1[:, None].repeat(1, 3), face_normals)
v_nrm.scatter_add_(0, i2[:, None].repeat(1, 3), face_normals)
# Normalize, replace zero (degenerated) normals with some default value
v_nrm = torch.where(
dot(v_nrm, v_nrm) > 1e-20, v_nrm, torch.as_tensor([0.0, 0.0, 1.0]).to(v_nrm)
)
v_nrm = F.normalize(v_nrm, dim=1)
if torch.is_anomaly_enabled():
assert torch.all(torch.isfinite(v_nrm))
return v_nrm
def _box_assign_vertex_to_cube_face(
vertex_positions: Float[Tensor, "Nv 3"],
vertex_normals: Float[Tensor, "Nv 3"],
triangle_idxs: Integer[Tensor, "Nf 3"],
bbox: Float[Tensor, "2 3"],
) -> Tuple[Float[Tensor, "Nf 3 2"], Integer[Tensor, "Nf 3"]]:
# Test to not have a scaled model to fit the space better
# bbox_min = bbox[:1].mean(-1, keepdim=True)
# bbox_max = bbox[1:].mean(-1, keepdim=True)
# v_pos_normalized = (vertex_positions - bbox_min) / (bbox_max - bbox_min)
# Create a [0, 1] normalized vertex position
v_pos_normalized = (vertex_positions - bbox[:1]) / (bbox[1:] - bbox[:1])
# And to [-1, 1]
v_pos_normalized = 2.0 * v_pos_normalized - 1.0
# Get all vertex positions for each triangle
# Now how do we define to which face the triangle belongs? Mean face pos? Max vertex pos?
v0 = v_pos_normalized[triangle_idxs[:, 0]]
v1 = v_pos_normalized[triangle_idxs[:, 1]]
v2 = v_pos_normalized[triangle_idxs[:, 2]]
tri_stack = torch.stack([v0, v1, v2], dim=1)
vn0 = vertex_normals[triangle_idxs[:, 0]]
vn1 = vertex_normals[triangle_idxs[:, 1]]
vn2 = vertex_normals[triangle_idxs[:, 2]]
tri_stack_nrm = torch.stack([vn0, vn1, vn2], dim=1)
# Just average the normals per face
face_normal = F.normalize(torch.sum(tri_stack_nrm, 1), eps=1e-6, dim=-1)
# Now decide based on the face normal in which box map we project
# abs_x, abs_y, abs_z = tri_stack_nrm.abs().unbind(-1)
abs_x, abs_y, abs_z = tri_stack.abs().unbind(-1)
axis = torch.tensor(
[
[1, 0, 0], # 0
[-1, 0, 0], # 1
[0, 1, 0], # 2
[0, -1, 0], # 3
[0, 0, 1], # 4
[0, 0, -1], # 5
],
device=face_normal.device,
dtype=face_normal.dtype,
)
face_normal_axis = (face_normal[:, None] * axis[None]).sum(-1)
index = face_normal_axis.argmax(-1)
max_axis, uc, vc = (
torch.ones_like(abs_x),
torch.zeros_like(tri_stack[..., :1]),
torch.zeros_like(tri_stack[..., :1]),
)
mask_pos_x = index == 0
max_axis[mask_pos_x] = abs_x[mask_pos_x]
uc[mask_pos_x] = tri_stack[mask_pos_x][..., 1:2]
vc[mask_pos_x] = -tri_stack[mask_pos_x][..., -1:]
mask_neg_x = index == 1
max_axis[mask_neg_x] = abs_x[mask_neg_x]
uc[mask_neg_x] = tri_stack[mask_neg_x][..., 1:2]
vc[mask_neg_x] = -tri_stack[mask_neg_x][..., -1:]
mask_pos_y = index == 2
max_axis[mask_pos_y] = abs_y[mask_pos_y]
uc[mask_pos_y] = tri_stack[mask_pos_y][..., 0:1]
vc[mask_pos_y] = -tri_stack[mask_pos_y][..., -1:]
mask_neg_y = index == 3
max_axis[mask_neg_y] = abs_y[mask_neg_y]
uc[mask_neg_y] = tri_stack[mask_neg_y][..., 0:1]
vc[mask_neg_y] = -tri_stack[mask_neg_y][..., -1:]
mask_pos_z = index == 4
max_axis[mask_pos_z] = abs_z[mask_pos_z]
uc[mask_pos_z] = tri_stack[mask_pos_z][..., 0:1]
vc[mask_pos_z] = tri_stack[mask_pos_z][..., 1:2]
mask_neg_z = index == 5
max_axis[mask_neg_z] = abs_z[mask_neg_z]
uc[mask_neg_z] = tri_stack[mask_neg_z][..., 0:1]
vc[mask_neg_z] = -tri_stack[mask_neg_z][..., 1:2]
# UC from [-1, 1] to [0, 1]
max_dim_div = max_axis.max(dim=0, keepdims=True).values
uc = ((uc[..., 0] / max_dim_div + 1.0) * 0.5).clip(0, 1)
vc = ((vc[..., 0] / max_dim_div + 1.0) * 0.5).clip(0, 1)
uv = torch.stack([uc, vc], dim=-1)
return uv, index
def _assign_faces_uv_to_atlas_index(
vertex_positions: Float[Tensor, "Nv 3"],
triangle_idxs: Integer[Tensor, "Nf 3"],
face_uv: Float[Tensor, "Nf 3 2"],
face_index: Integer[Tensor, "Nf 3"],
) -> Integer[Tensor, "Nf"]: # noqa: F821
triangle_pos = vertex_positions[triangle_idxs]
# We need to do perform 3 overlap checks.
# The first set is placed in the upper two thirds of the UV atlas.
# Conceptually, this is the direct visible surfaces from the each cube side
# The second set is placed in the lower thirds and the left half of the UV atlas.
# This is the first set of occluded surfaces. They will also be saved in the projected fashion
# The third pass finds all non assigned faces. They will be placed in the bottom right half of
# the UV atlas in scattered fashion.
assign_idx = face_index.clone()
for overlap_step in range(3):
overlapping_indicator = torch.zeros_like(assign_idx, dtype=torch.bool)
for i in range(overlap_step * 6, (overlap_step + 1) * 6):
mask = assign_idx == i
if not mask.any():
continue
# Get all elements belonging to the projection face
uv_triangle = face_uv[mask]
cur_triangle_pos = triangle_pos[mask]
# Find the center of the uv coordinates
center_uv = uv_triangle.mean(dim=1, keepdim=True)
# And also the radius of the triangle
uv_triangle_radius = (uv_triangle - center_uv).norm(dim=-1).max(-1).values
potentially_overlapping_mask = (
# Find all close triangles
(center_uv[None, ...] - center_uv[:, None]).norm(dim=-1)
# Do not select the same element by offseting with an large valued identity matrix
+ torch.eye(
uv_triangle.shape[0],
device=uv_triangle.device,
dtype=uv_triangle.dtype,
).unsqueeze(-1)
* 1000
)
# Mark all potentially overlapping triangles to reduce the number of triangle intersection tests
potentially_overlapping_mask = (
potentially_overlapping_mask
<= (uv_triangle_radius.view(-1, 1, 1) * 3.0)
).squeeze(-1)
overlap_coords = torch.stack(torch.where(potentially_overlapping_mask), -1)
# Only unique triangles (A|B and B|A should be the same)
f = torch.min(overlap_coords, dim=-1).values
s = torch.max(overlap_coords, dim=-1).values
overlap_coords = torch.unique(torch.stack([f, s], dim=1), dim=0)
first, second = overlap_coords.unbind(-1)
# Get the triangles
tri_1 = uv_triangle[first]
tri_2 = uv_triangle[second]
# Perform the actual set with the reduced number of potentially overlapping triangles
its = triangle_intersection_2d(tri_1, tri_2, eps=1e-6)
# So we now need to detect which triangles are the occluded ones.
# We always assume the first to be the visible one (the others should move)
# In the previous step we use a lexigraphical sort to get the unique pairs
# In this we use a sort based on the orthographic projection
ax = 0 if i < 2 else 1 if i < 4 else 2
use_max = i % 2 == 1
tri1_c = cur_triangle_pos[first].mean(dim=1)
tri2_c = cur_triangle_pos[second].mean(dim=1)
mark_first = (
(tri1_c[..., ax] > tri2_c[..., ax])
if use_max
else (tri1_c[..., ax] < tri2_c[..., ax])
)
first[mark_first] = second[mark_first]
# Lastly the same index can be tested multiple times.
# If one marks it as overlapping we keep it marked as such.
# We do this by testing if it has been marked at least once.
unique_idx, rev_idx = torch.unique(first, return_inverse=True)
add = torch.zeros_like(unique_idx, dtype=torch.float32)
add.index_add_(0, rev_idx, its.float())
its_mask = add > 0
# And fill it in the overlapping indicator
idx = torch.where(mask)[0][unique_idx]
overlapping_indicator[idx] = its_mask
# Move the index to the overlap regions (shift by 6)
assign_idx[overlapping_indicator] += 6
# We do not care about the correct face placement after the first 2 slices
max_idx = 6 * 2
return assign_idx.clamp(0, max_idx)
def _find_slice_offset_and_scale(
index: Integer[Tensor, "Nf"], # noqa: F821
) -> Tuple[
Float[Tensor, "Nf"], Float[Tensor, "Nf"], Float[Tensor, "Nf"], Float[Tensor, "Nf"] # noqa: F821
]: # noqa: F821
# 6 due to the 6 cube faces
off = 1 / 3
dupl_off = 1 / 6
# Here, we need to decide how to pack the textures in the case of overlap
def x_offset_calc(x, i):
offset_calc = i // 6
# Initial coordinates - just 3x2 grid
if offset_calc == 0:
return off * x
else:
# Smaller 3x2 grid plus eventual shift to right for
# second overlap
return dupl_off * x + min(offset_calc - 1, 1) * 0.5
def y_offset_calc(x, i):
offset_calc = i // 6
# Initial coordinates - just a 3x2 grid
if offset_calc == 0:
return off * x
else:
# Smaller coordinates in the lowest row
return dupl_off * x + off * 2
offset_x = torch.zeros_like(index, dtype=torch.float32)
offset_y = torch.zeros_like(index, dtype=torch.float32)
offset_x_vals = [0, 1, 2, 0, 1, 2]
offset_y_vals = [0, 0, 0, 1, 1, 1]
for i in range(index.max().item() + 1):
mask = index == i
if not mask.any():
continue
offset_x[mask] = x_offset_calc(offset_x_vals[i % 6], i)
offset_y[mask] = y_offset_calc(offset_y_vals[i % 6], i)
div_x = torch.full_like(index, 6 // 2, dtype=torch.float32)
# All overlap elements are saved in half scale
div_x[index >= 6] = 6
div_y = div_x.clone() # Same for y
# Except for the random overlaps
div_x[index >= 12] = 2
# But the random overlaps are saved in a large block in the lower thirds
div_y[index >= 12] = 3
return offset_x, offset_y, div_x, div_y
def rotation_flip_matrix_2d(
rad: float, flip_x: bool = False, flip_y: bool = False
) -> Float[Tensor, "2 2"]:
cos = math.cos(rad)
sin = math.sin(rad)
rot_mat = torch.tensor([[cos, -sin], [sin, cos]], dtype=torch.float32)
flip_mat = torch.tensor(
[
[-1 if flip_x else 1, 0],
[0, -1 if flip_y else 1],
],
dtype=torch.float32,
)
return flip_mat @ rot_mat
def calculate_tangents(
vertex_positions: Float[Tensor, "Nv 3"],
vertex_normals: Float[Tensor, "Nv 3"],
triangle_idxs: Integer[Tensor, "Nf 3"],
face_uv: Float[Tensor, "Nf 3 2"],
) -> Float[Tensor, "Nf 3 4"]: # noqa: F821
vn_idx = [None] * 3
pos = [None] * 3
tex = face_uv.unbind(1)
for i in range(0, 3):
pos[i] = vertex_positions[triangle_idxs[:, i]]
# t_nrm_idx is always the same as t_pos_idx
vn_idx[i] = triangle_idxs[:, i]
tangents = torch.zeros_like(vertex_normals)
tansum = torch.zeros_like(vertex_normals)
# Compute tangent space for each triangle
duv1 = tex[1] - tex[0]
duv2 = tex[2] - tex[0]
dpos1 = pos[1] - pos[0]
dpos2 = pos[2] - pos[0]
tng_nom = dpos1 * duv2[..., 1:2] - dpos2 * duv1[..., 1:2]
denom = duv1[..., 0:1] * duv2[..., 1:2] - duv1[..., 1:2] * duv2[..., 0:1]
# Avoid division by zero for degenerated texture coordinates
denom_safe = denom.clip(1e-6)
tang = tng_nom / denom_safe
# Update all 3 vertices
for i in range(0, 3):
idx = vn_idx[i][:, None].repeat(1, 3)
tangents.scatter_add_(0, idx, tang) # tangents[n_i] = tangents[n_i] + tang
tansum.scatter_add_(
0, idx, torch.ones_like(tang)
) # tansum[n_i] = tansum[n_i] + 1
# Also normalize it. Here we do not normalize the individual triangles first so larger area
# triangles influence the tangent space more
tangents = tangents / tansum
# Normalize and make sure tangent is perpendicular to normal
tangents = F.normalize(tangents, dim=1)
tangents = F.normalize(tangents - dot(tangents, vertex_normals) * vertex_normals)
return tangents
def _rotate_uv_slices_consistent_space(
vertex_positions: Float[Tensor, "Nv 3"],
vertex_normals: Float[Tensor, "Nv 3"],
triangle_idxs: Integer[Tensor, "Nf 3"],
uv: Float[Tensor, "Nf 3 2"],
index: Integer[Tensor, "Nf"], # noqa: F821
):
tangents = calculate_tangents(vertex_positions, vertex_normals, triangle_idxs, uv)
pos_stack = torch.stack(
[
-vertex_positions[..., 1],
vertex_positions[..., 0],
torch.zeros_like(vertex_positions[..., 0]),
],
dim=-1,
)
expected_tangents = F.normalize(
torch.linalg.cross(
vertex_normals, torch.linalg.cross(pos_stack, vertex_normals)
),
-1,
)
actual_tangents = tangents[triangle_idxs]
expected_tangents = expected_tangents[triangle_idxs]
def rotation_matrix_2d(theta):
c, s = torch.cos(theta), torch.sin(theta)
return torch.tensor([[c, -s], [s, c]])
# Now find the rotation
index_mod = index % 6 # Shouldn't happen. Just for safety
for i in range(6):
mask = index_mod == i
if not mask.any():
continue
actual_mean_tangent = actual_tangents[mask].mean(dim=(0, 1))
expected_mean_tangent = expected_tangents[mask].mean(dim=(0, 1))
dot_product = torch.dot(actual_mean_tangent, expected_mean_tangent)
cross_product = (
actual_mean_tangent[0] * expected_mean_tangent[1]
- actual_mean_tangent[1] * expected_mean_tangent[0]
)
angle = torch.atan2(cross_product, dot_product)
rot_matrix = rotation_matrix_2d(angle).to(mask.device)
# Center the uv coordinate to be in the range of -1 to 1 and 0 centered
uv_cur = uv[mask] * 2 - 1 # Center it first
# Rotate it
uv[mask] = torch.einsum("ij,nfj->nfi", rot_matrix, uv_cur)
# Rescale uv[mask] to be within the 0-1 range
uv[mask] = (uv[mask] - uv[mask].min()) / (uv[mask].max() - uv[mask].min())
return uv
def _handle_slice_uvs(
uv: Float[Tensor, "Nf 3 2"],
index: Integer[Tensor, "Nf"], # noqa: F821
island_padding: float,
max_index: int = 6 * 2,
) -> Float[Tensor, "Nf 3 2"]: # noqa: F821
uc, vc = uv.unbind(-1)
# Get the second slice (The first overlap)
index_filter = [index == i for i in range(6, max_index)]
# Normalize them to always fully fill the atlas patch
for i, fi in enumerate(index_filter):
if fi.sum() > 0:
# Scale the slice but only up to a factor of 2
# This keeps the texture resolution with the first slice in line (Half space in UV)
uc[fi] = (uc[fi] - uc[fi].min()) / (uc[fi].max() - uc[fi].min()).clip(0.5)
vc[fi] = (vc[fi] - vc[fi].min()) / (vc[fi].max() - vc[fi].min()).clip(0.5)
uc_padded = (uc * (1 - 2 * island_padding) + island_padding).clip(0, 1)
vc_padded = (vc * (1 - 2 * island_padding) + island_padding).clip(0, 1)
return torch.stack([uc_padded, vc_padded], dim=-1)
def _handle_remaining_uvs(
uv: Float[Tensor, "Nf 3 2"],
index: Integer[Tensor, "Nf"], # noqa: F821
island_padding: float,
) -> Float[Tensor, "Nf 3 2"]:
uc, vc = uv.unbind(-1)
# Get all remaining elements
remaining_filter = index >= 6 * 2
squares_left = remaining_filter.sum()
if squares_left == 0:
return uv
uc = uc[remaining_filter]
vc = vc[remaining_filter]
# Or remaining triangles are distributed in a rectangle
# The rectangle takes 0.5 of the entire uv space in width and 1/3 in height
ratio = 0.5 * (1 / 3) # 1.5
# sqrt(744/(0.5*(1/3)))
mult = math.sqrt(squares_left / ratio)
num_square_width = int(math.ceil(0.5 * mult))
num_square_height = int(math.ceil(squares_left / num_square_width))
width = 1 / num_square_width
height = 1 / num_square_height
# The idea is again to keep the texture resolution consistent with the first slice
# This only occupys half the region in the texture chart but the scaling on the squares
# assumes full coverage.
clip_val = min(width, height) * 1.5
# Now normalize the UVs with taking into account the maximum scaling
uc = (uc - uc.min(dim=1, keepdim=True).values) / (
uc.amax(dim=1, keepdim=True) - uc.amin(dim=1, keepdim=True)
).clip(clip_val)
vc = (vc - vc.min(dim=1, keepdim=True).values) / (
vc.amax(dim=1, keepdim=True) - vc.amin(dim=1, keepdim=True)
).clip(clip_val)
# Add a small padding
uc = (
uc * (1 - island_padding * num_square_width * 0.5)
+ island_padding * num_square_width * 0.25
).clip(0, 1)
vc = (
vc * (1 - island_padding * num_square_height * 0.5)
+ island_padding * num_square_height * 0.25
).clip(0, 1)
uc = uc * width
vc = vc * height
# And calculate offsets for each element
idx = torch.arange(uc.shape[0], device=uc.device, dtype=torch.int32)
x_idx = idx % num_square_width
y_idx = idx // num_square_width
# And move each triangle to its own spot
uc = uc + x_idx[:, None] * width
vc = vc + y_idx[:, None] * height
uc = (uc * (1 - 2 * island_padding * 0.5) + island_padding * 0.5).clip(0, 1)
vc = (vc * (1 - 2 * island_padding * 0.5) + island_padding * 0.5).clip(0, 1)
uv[remaining_filter] = torch.stack([uc, vc], dim=-1)
return uv
def _distribute_individual_uvs_in_atlas(
face_uv: Float[Tensor, "Nf 3 2"],
assigned_faces: Integer[Tensor, "Nf"], # noqa: F821
offset_x: Float[Tensor, "Nf"], # noqa: F821
offset_y: Float[Tensor, "Nf"], # noqa: F821
div_x: Float[Tensor, "Nf"], # noqa: F821
div_y: Float[Tensor, "Nf"], # noqa: F821
island_padding: float,
):
# Place the slice first
placed_uv = _handle_slice_uvs(face_uv, assigned_faces, island_padding)
# Then handle the remaining overlap elements
placed_uv = _handle_remaining_uvs(placed_uv, assigned_faces, island_padding)
uc, vc = placed_uv.unbind(-1)
uc = uc / div_x[:, None] + offset_x[:, None]
vc = vc / div_y[:, None] + offset_y[:, None]
uv = torch.stack([uc, vc], dim=-1).view(-1, 2)
return uv
def _get_unique_face_uv(
uv: Float[Tensor, "Nf 3 2"],
) -> Tuple[Float[Tensor, "Utex 3"], Integer[Tensor, "Nf"]]: # noqa: F821
unique_uv, unique_idx = torch.unique(uv, return_inverse=True, dim=0)
# And add the face to uv index mapping
vtex_idx = unique_idx.view(-1, 3)
return unique_uv, vtex_idx
def _align_mesh_with_main_axis(
vertex_positions: Float[Tensor, "Nv 3"], vertex_normals: Float[Tensor, "Nv 3"]
) -> Tuple[Float[Tensor, "Nv 3"], Float[Tensor, "Nv 3"]]:
# Use pca to find the 2 main axis (third is derived by cross product)
# Set the random seed so it's repeatable
torch.manual_seed(0)
_, _, v = torch.pca_lowrank(vertex_positions, q=2)
main_axis, seconday_axis = v[:, 0], v[:, 1]
main_axis: Float[Tensor, "3"] = F.normalize(main_axis, eps=1e-6, dim=-1)
# Orthogonalize the second axis
seconday_axis: Float[Tensor, "3"] = F.normalize(
seconday_axis - dot(seconday_axis, main_axis) * main_axis, eps=1e-6, dim=-1
)
# Create perpendicular third axis
third_axis: Float[Tensor, "3"] = F.normalize(
torch.cross(main_axis, seconday_axis), dim=-1, eps=1e-6
)
# Check to which canonical axis each aligns
main_axis_max_idx = main_axis.abs().argmax().item()
seconday_axis_max_idx = seconday_axis.abs().argmax().item()
third_axis_max_idx = third_axis.abs().argmax().item()
# Now sort the axes based on the argmax so they align with thecanonoical axes
# If two axes have the same argmax move one of them
all_possible_axis = {0, 1, 2}
cur_index = 1
while len(set([main_axis_max_idx, seconday_axis_max_idx, third_axis_max_idx])) != 3:
# Find missing axis
missing_axis = all_possible_axis - set(
[main_axis_max_idx, seconday_axis_max_idx, third_axis_max_idx]
)
missing_axis = missing_axis.pop()
# Just assign it to third axis as it had the smallest contribution to the
# overall shape
if cur_index == 1:
third_axis_max_idx = missing_axis
elif cur_index == 2:
seconday_axis_max_idx = missing_axis
else:
raise ValueError("Could not find 3 unique axis")
cur_index += 1
if len({main_axis_max_idx, seconday_axis_max_idx, third_axis_max_idx}) != 3:
raise ValueError("Could not find 3 unique axis")
axes = [None] * 3
axes[main_axis_max_idx] = main_axis
axes[seconday_axis_max_idx] = seconday_axis
axes[third_axis_max_idx] = third_axis
# Create rotation matrix from the individual axes
rot_mat = torch.stack(axes, dim=1).T
# Now rotate the vertex positions and vertex normals so the mesh aligns with the main axis
vertex_positions = torch.einsum("ij,nj->ni", rot_mat, vertex_positions)
vertex_normals = torch.einsum("ij,nj->ni", rot_mat, vertex_normals)
return vertex_positions, vertex_normals
def box_projection_uv_unwrap(
vertex_positions: Float[Tensor, "Nv 3"],
vertex_normals: Float[Tensor, "Nv 3"],
triangle_idxs: Integer[Tensor, "Nf 3"],
island_padding: float,
) -> Tuple[Float[Tensor, "Utex 3"], Integer[Tensor, "Nf"]]: # noqa: F821
# Align the mesh with main axis directions first
# vertex_positions, vertex_normals = _align_mesh_with_main_axis(
# vertex_positions, vertex_normals
# )
bbox: Float[Tensor, "2 3"] = torch.stack(
[vertex_positions.min(dim=0).values, vertex_positions.max(dim=0).values], dim=0
)
# First decide in which cube face the triangle is placed
face_uv, face_index = _box_assign_vertex_to_cube_face(
vertex_positions, vertex_normals, triangle_idxs, bbox
)
# Rotate the UV islands in a way that they align with the radial z tangent space
face_uv = _rotate_uv_slices_consistent_space(
vertex_positions, vertex_normals, triangle_idxs, face_uv, face_index
)
# Then find where where the face is placed in the atlas.
# This has to detect potential overlaps
assigned_atlas_index = _assign_faces_uv_to_atlas_index(
vertex_positions, triangle_idxs, face_uv, face_index
)
# Then figure out the final place in the atlas based on the assignment
offset_x, offset_y, div_x, div_y = _find_slice_offset_and_scale(
assigned_atlas_index
)
# Next distribute the faces in the uv atlas
placed_uv = _distribute_individual_uvs_in_atlas(
face_uv, assigned_atlas_index, offset_x, offset_y, div_x, div_y, island_padding
)
# And get the unique per-triangle UV coordinates
return _get_unique_face_uv(placed_uv)