import os from pathlib import Path import numpy as np import cv2 from detectron2 import model_zoo from detectron2.engine import DefaultPredictor from detectron2.config import get_cfg from detectron2.utils.visualizer import Visualizer from detectron2.utils.visualizer import ColorMode PATH_PROJECT = Path(__file__).parent.parent def get_model(): """ This function is for the model of the project """ cfg = get_cfg() cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")) cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.7 # set threshold for this model cfg.MODEL.WEIGHTS = str(PATH_PROJECT/"output"/"model_final.pth") # Let training initialize from model zoo cfg.MODEL.ROI_HEADS.NUM_CLASSES = 2 predictor = DefaultPredictor(cfg) return predictor def predict_image(img_pil): """ This function is for the prediction of the model return the image with the prediction and the areas of the objects """ predictor = get_model() img_array = np.array(img_pil) outputs = predictor(img_array) v = Visualizer(img_array, scale=1, instance_mode=ColorMode.IMAGE_BW # remove the colors of unsegmented pixels ) v = v.draw_instance_predictions(outputs["instances"].to("cpu")) image_output = v.get_image()[:, :, ::-1].copy() masks = outputs["instances"].pred_masks.cpu().numpy() class_ids = outputs["instances"].pred_classes.cpu().numpy() areas = [np.sum(mask) for mask in masks] # Add text labels with the object IDs and areas for i, (mask, class_id, area) in enumerate(zip(masks, class_ids, areas)): text = f"The id is {i}" text_size, _ = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.5, thickness=1) pos = (np.unravel_index(np.argmax(mask), mask.shape))[::-1] pos = (pos[0] - text_size[0]//2, pos[1] - text_size[1]//2) cv2.putText(image_output, text, pos, cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.5, color=(0,0,255), thickness=1) values = {"image":image_output, "areas":areas, "masks":masks} return values